Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 +no ∅ ) = ( 𝑏 +no ∅ ) ) |
2 |
|
id |
⊢ ( 𝑎 = 𝑏 → 𝑎 = 𝑏 ) |
3 |
1 2
|
eqeq12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 +no ∅ ) = 𝑎 ↔ ( 𝑏 +no ∅ ) = 𝑏 ) ) |
4 |
|
oveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 +no ∅ ) = ( 𝐴 +no ∅ ) ) |
5 |
|
id |
⊢ ( 𝑎 = 𝐴 → 𝑎 = 𝐴 ) |
6 |
4 5
|
eqeq12d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 +no ∅ ) = 𝑎 ↔ ( 𝐴 +no ∅ ) = 𝐴 ) ) |
7 |
|
0elon |
⊢ ∅ ∈ On |
8 |
|
naddov2 |
⊢ ( ( 𝑎 ∈ On ∧ ∅ ∈ On ) → ( 𝑎 +no ∅ ) = ∩ { 𝑥 ∈ On ∣ ( ∀ 𝑐 ∈ ∅ ( 𝑎 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no ∅ ) ∈ 𝑥 ) } ) |
9 |
7 8
|
mpan2 |
⊢ ( 𝑎 ∈ On → ( 𝑎 +no ∅ ) = ∩ { 𝑥 ∈ On ∣ ( ∀ 𝑐 ∈ ∅ ( 𝑎 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no ∅ ) ∈ 𝑥 ) } ) |
10 |
9
|
adantr |
⊢ ( ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no ∅ ) = 𝑏 ) → ( 𝑎 +no ∅ ) = ∩ { 𝑥 ∈ On ∣ ( ∀ 𝑐 ∈ ∅ ( 𝑎 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no ∅ ) ∈ 𝑥 ) } ) |
11 |
|
ral0 |
⊢ ∀ 𝑐 ∈ ∅ ( 𝑎 +no 𝑐 ) ∈ 𝑥 |
12 |
11
|
biantrur |
⊢ ( ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no ∅ ) ∈ 𝑥 ↔ ( ∀ 𝑐 ∈ ∅ ( 𝑎 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no ∅ ) ∈ 𝑥 ) ) |
13 |
|
eleq1 |
⊢ ( ( 𝑏 +no ∅ ) = 𝑏 → ( ( 𝑏 +no ∅ ) ∈ 𝑥 ↔ 𝑏 ∈ 𝑥 ) ) |
14 |
13
|
ralimi |
⊢ ( ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no ∅ ) = 𝑏 → ∀ 𝑏 ∈ 𝑎 ( ( 𝑏 +no ∅ ) ∈ 𝑥 ↔ 𝑏 ∈ 𝑥 ) ) |
15 |
|
ralbi |
⊢ ( ∀ 𝑏 ∈ 𝑎 ( ( 𝑏 +no ∅ ) ∈ 𝑥 ↔ 𝑏 ∈ 𝑥 ) → ( ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no ∅ ) ∈ 𝑥 ↔ ∀ 𝑏 ∈ 𝑎 𝑏 ∈ 𝑥 ) ) |
16 |
14 15
|
syl |
⊢ ( ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no ∅ ) = 𝑏 → ( ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no ∅ ) ∈ 𝑥 ↔ ∀ 𝑏 ∈ 𝑎 𝑏 ∈ 𝑥 ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no ∅ ) = 𝑏 ) → ( ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no ∅ ) ∈ 𝑥 ↔ ∀ 𝑏 ∈ 𝑎 𝑏 ∈ 𝑥 ) ) |
18 |
|
dfss3 |
⊢ ( 𝑎 ⊆ 𝑥 ↔ ∀ 𝑏 ∈ 𝑎 𝑏 ∈ 𝑥 ) |
19 |
17 18
|
bitr4di |
⊢ ( ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no ∅ ) = 𝑏 ) → ( ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no ∅ ) ∈ 𝑥 ↔ 𝑎 ⊆ 𝑥 ) ) |
20 |
12 19
|
bitr3id |
⊢ ( ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no ∅ ) = 𝑏 ) → ( ( ∀ 𝑐 ∈ ∅ ( 𝑎 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no ∅ ) ∈ 𝑥 ) ↔ 𝑎 ⊆ 𝑥 ) ) |
21 |
20
|
rabbidv |
⊢ ( ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no ∅ ) = 𝑏 ) → { 𝑥 ∈ On ∣ ( ∀ 𝑐 ∈ ∅ ( 𝑎 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no ∅ ) ∈ 𝑥 ) } = { 𝑥 ∈ On ∣ 𝑎 ⊆ 𝑥 } ) |
22 |
21
|
inteqd |
⊢ ( ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no ∅ ) = 𝑏 ) → ∩ { 𝑥 ∈ On ∣ ( ∀ 𝑐 ∈ ∅ ( 𝑎 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no ∅ ) ∈ 𝑥 ) } = ∩ { 𝑥 ∈ On ∣ 𝑎 ⊆ 𝑥 } ) |
23 |
|
intmin |
⊢ ( 𝑎 ∈ On → ∩ { 𝑥 ∈ On ∣ 𝑎 ⊆ 𝑥 } = 𝑎 ) |
24 |
23
|
adantr |
⊢ ( ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no ∅ ) = 𝑏 ) → ∩ { 𝑥 ∈ On ∣ 𝑎 ⊆ 𝑥 } = 𝑎 ) |
25 |
10 22 24
|
3eqtrd |
⊢ ( ( 𝑎 ∈ On ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no ∅ ) = 𝑏 ) → ( 𝑎 +no ∅ ) = 𝑎 ) |
26 |
25
|
ex |
⊢ ( 𝑎 ∈ On → ( ∀ 𝑏 ∈ 𝑎 ( 𝑏 +no ∅ ) = 𝑏 → ( 𝑎 +no ∅ ) = 𝑎 ) ) |
27 |
3 6 26
|
tfis3 |
⊢ ( 𝐴 ∈ On → ( 𝐴 +no ∅ ) = 𝐴 ) |