Metamath Proof Explorer


Theorem naddid1

Description: Ordinal zero is the additive identity for natural addition. (Contributed by Scott Fenton, 26-Aug-2024)

Ref Expression
Assertion naddid1 ( 𝐴 ∈ On → ( 𝐴 +no ∅ ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 oveq1 ( 𝑎 = 𝑏 → ( 𝑎 +no ∅ ) = ( 𝑏 +no ∅ ) )
2 id ( 𝑎 = 𝑏𝑎 = 𝑏 )
3 1 2 eqeq12d ( 𝑎 = 𝑏 → ( ( 𝑎 +no ∅ ) = 𝑎 ↔ ( 𝑏 +no ∅ ) = 𝑏 ) )
4 oveq1 ( 𝑎 = 𝐴 → ( 𝑎 +no ∅ ) = ( 𝐴 +no ∅ ) )
5 id ( 𝑎 = 𝐴𝑎 = 𝐴 )
6 4 5 eqeq12d ( 𝑎 = 𝐴 → ( ( 𝑎 +no ∅ ) = 𝑎 ↔ ( 𝐴 +no ∅ ) = 𝐴 ) )
7 0elon ∅ ∈ On
8 naddov2 ( ( 𝑎 ∈ On ∧ ∅ ∈ On ) → ( 𝑎 +no ∅ ) = { 𝑥 ∈ On ∣ ( ∀ 𝑐 ∈ ∅ ( 𝑎 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏𝑎 ( 𝑏 +no ∅ ) ∈ 𝑥 ) } )
9 7 8 mpan2 ( 𝑎 ∈ On → ( 𝑎 +no ∅ ) = { 𝑥 ∈ On ∣ ( ∀ 𝑐 ∈ ∅ ( 𝑎 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏𝑎 ( 𝑏 +no ∅ ) ∈ 𝑥 ) } )
10 9 adantr ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎 ( 𝑏 +no ∅ ) = 𝑏 ) → ( 𝑎 +no ∅ ) = { 𝑥 ∈ On ∣ ( ∀ 𝑐 ∈ ∅ ( 𝑎 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏𝑎 ( 𝑏 +no ∅ ) ∈ 𝑥 ) } )
11 ral0 𝑐 ∈ ∅ ( 𝑎 +no 𝑐 ) ∈ 𝑥
12 11 biantrur ( ∀ 𝑏𝑎 ( 𝑏 +no ∅ ) ∈ 𝑥 ↔ ( ∀ 𝑐 ∈ ∅ ( 𝑎 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏𝑎 ( 𝑏 +no ∅ ) ∈ 𝑥 ) )
13 eleq1 ( ( 𝑏 +no ∅ ) = 𝑏 → ( ( 𝑏 +no ∅ ) ∈ 𝑥𝑏𝑥 ) )
14 13 ralimi ( ∀ 𝑏𝑎 ( 𝑏 +no ∅ ) = 𝑏 → ∀ 𝑏𝑎 ( ( 𝑏 +no ∅ ) ∈ 𝑥𝑏𝑥 ) )
15 ralbi ( ∀ 𝑏𝑎 ( ( 𝑏 +no ∅ ) ∈ 𝑥𝑏𝑥 ) → ( ∀ 𝑏𝑎 ( 𝑏 +no ∅ ) ∈ 𝑥 ↔ ∀ 𝑏𝑎 𝑏𝑥 ) )
16 14 15 syl ( ∀ 𝑏𝑎 ( 𝑏 +no ∅ ) = 𝑏 → ( ∀ 𝑏𝑎 ( 𝑏 +no ∅ ) ∈ 𝑥 ↔ ∀ 𝑏𝑎 𝑏𝑥 ) )
17 16 adantl ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎 ( 𝑏 +no ∅ ) = 𝑏 ) → ( ∀ 𝑏𝑎 ( 𝑏 +no ∅ ) ∈ 𝑥 ↔ ∀ 𝑏𝑎 𝑏𝑥 ) )
18 dfss3 ( 𝑎𝑥 ↔ ∀ 𝑏𝑎 𝑏𝑥 )
19 17 18 bitr4di ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎 ( 𝑏 +no ∅ ) = 𝑏 ) → ( ∀ 𝑏𝑎 ( 𝑏 +no ∅ ) ∈ 𝑥𝑎𝑥 ) )
20 12 19 bitr3id ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎 ( 𝑏 +no ∅ ) = 𝑏 ) → ( ( ∀ 𝑐 ∈ ∅ ( 𝑎 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏𝑎 ( 𝑏 +no ∅ ) ∈ 𝑥 ) ↔ 𝑎𝑥 ) )
21 20 rabbidv ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎 ( 𝑏 +no ∅ ) = 𝑏 ) → { 𝑥 ∈ On ∣ ( ∀ 𝑐 ∈ ∅ ( 𝑎 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏𝑎 ( 𝑏 +no ∅ ) ∈ 𝑥 ) } = { 𝑥 ∈ On ∣ 𝑎𝑥 } )
22 21 inteqd ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎 ( 𝑏 +no ∅ ) = 𝑏 ) → { 𝑥 ∈ On ∣ ( ∀ 𝑐 ∈ ∅ ( 𝑎 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏𝑎 ( 𝑏 +no ∅ ) ∈ 𝑥 ) } = { 𝑥 ∈ On ∣ 𝑎𝑥 } )
23 intmin ( 𝑎 ∈ On → { 𝑥 ∈ On ∣ 𝑎𝑥 } = 𝑎 )
24 23 adantr ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎 ( 𝑏 +no ∅ ) = 𝑏 ) → { 𝑥 ∈ On ∣ 𝑎𝑥 } = 𝑎 )
25 10 22 24 3eqtrd ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎 ( 𝑏 +no ∅ ) = 𝑏 ) → ( 𝑎 +no ∅ ) = 𝑎 )
26 25 ex ( 𝑎 ∈ On → ( ∀ 𝑏𝑎 ( 𝑏 +no ∅ ) = 𝑏 → ( 𝑎 +no ∅ ) = 𝑎 ) )
27 3 6 26 tfis3 ( 𝐴 ∈ On → ( 𝐴 +no ∅ ) = 𝐴 )