Metamath Proof Explorer


Theorem naddid1

Description: Ordinal zero is the additive identity for natural addition. (Contributed by Scott Fenton, 26-Aug-2024)

Ref Expression
Assertion naddid1 Could not format assertion : No typesetting found for |- ( A e. On -> ( A +no (/) ) = A ) with typecode |-

Proof

Step Hyp Ref Expression
1 oveq1 Could not format ( a = b -> ( a +no (/) ) = ( b +no (/) ) ) : No typesetting found for |- ( a = b -> ( a +no (/) ) = ( b +no (/) ) ) with typecode |-
2 id a = b a = b
3 1 2 eqeq12d Could not format ( a = b -> ( ( a +no (/) ) = a <-> ( b +no (/) ) = b ) ) : No typesetting found for |- ( a = b -> ( ( a +no (/) ) = a <-> ( b +no (/) ) = b ) ) with typecode |-
4 oveq1 Could not format ( a = A -> ( a +no (/) ) = ( A +no (/) ) ) : No typesetting found for |- ( a = A -> ( a +no (/) ) = ( A +no (/) ) ) with typecode |-
5 id a = A a = A
6 4 5 eqeq12d Could not format ( a = A -> ( ( a +no (/) ) = a <-> ( A +no (/) ) = A ) ) : No typesetting found for |- ( a = A -> ( ( a +no (/) ) = a <-> ( A +no (/) ) = A ) ) with typecode |-
7 0elon On
8 naddov2 Could not format ( ( a e. On /\ (/) e. On ) -> ( a +no (/) ) = |^| { x e. On | ( A. c e. (/) ( a +no c ) e. x /\ A. b e. a ( b +no (/) ) e. x ) } ) : No typesetting found for |- ( ( a e. On /\ (/) e. On ) -> ( a +no (/) ) = |^| { x e. On | ( A. c e. (/) ( a +no c ) e. x /\ A. b e. a ( b +no (/) ) e. x ) } ) with typecode |-
9 7 8 mpan2 Could not format ( a e. On -> ( a +no (/) ) = |^| { x e. On | ( A. c e. (/) ( a +no c ) e. x /\ A. b e. a ( b +no (/) ) e. x ) } ) : No typesetting found for |- ( a e. On -> ( a +no (/) ) = |^| { x e. On | ( A. c e. (/) ( a +no c ) e. x /\ A. b e. a ( b +no (/) ) e. x ) } ) with typecode |-
10 9 adantr Could not format ( ( a e. On /\ A. b e. a ( b +no (/) ) = b ) -> ( a +no (/) ) = |^| { x e. On | ( A. c e. (/) ( a +no c ) e. x /\ A. b e. a ( b +no (/) ) e. x ) } ) : No typesetting found for |- ( ( a e. On /\ A. b e. a ( b +no (/) ) = b ) -> ( a +no (/) ) = |^| { x e. On | ( A. c e. (/) ( a +no c ) e. x /\ A. b e. a ( b +no (/) ) e. x ) } ) with typecode |-
11 ral0 Could not format A. c e. (/) ( a +no c ) e. x : No typesetting found for |- A. c e. (/) ( a +no c ) e. x with typecode |-
12 11 biantrur Could not format ( A. b e. a ( b +no (/) ) e. x <-> ( A. c e. (/) ( a +no c ) e. x /\ A. b e. a ( b +no (/) ) e. x ) ) : No typesetting found for |- ( A. b e. a ( b +no (/) ) e. x <-> ( A. c e. (/) ( a +no c ) e. x /\ A. b e. a ( b +no (/) ) e. x ) ) with typecode |-
13 eleq1 Could not format ( ( b +no (/) ) = b -> ( ( b +no (/) ) e. x <-> b e. x ) ) : No typesetting found for |- ( ( b +no (/) ) = b -> ( ( b +no (/) ) e. x <-> b e. x ) ) with typecode |-
14 13 ralimi Could not format ( A. b e. a ( b +no (/) ) = b -> A. b e. a ( ( b +no (/) ) e. x <-> b e. x ) ) : No typesetting found for |- ( A. b e. a ( b +no (/) ) = b -> A. b e. a ( ( b +no (/) ) e. x <-> b e. x ) ) with typecode |-
15 ralbi Could not format ( A. b e. a ( ( b +no (/) ) e. x <-> b e. x ) -> ( A. b e. a ( b +no (/) ) e. x <-> A. b e. a b e. x ) ) : No typesetting found for |- ( A. b e. a ( ( b +no (/) ) e. x <-> b e. x ) -> ( A. b e. a ( b +no (/) ) e. x <-> A. b e. a b e. x ) ) with typecode |-
16 14 15 syl Could not format ( A. b e. a ( b +no (/) ) = b -> ( A. b e. a ( b +no (/) ) e. x <-> A. b e. a b e. x ) ) : No typesetting found for |- ( A. b e. a ( b +no (/) ) = b -> ( A. b e. a ( b +no (/) ) e. x <-> A. b e. a b e. x ) ) with typecode |-
17 16 adantl Could not format ( ( a e. On /\ A. b e. a ( b +no (/) ) = b ) -> ( A. b e. a ( b +no (/) ) e. x <-> A. b e. a b e. x ) ) : No typesetting found for |- ( ( a e. On /\ A. b e. a ( b +no (/) ) = b ) -> ( A. b e. a ( b +no (/) ) e. x <-> A. b e. a b e. x ) ) with typecode |-
18 dfss3 a x b a b x
19 17 18 bitr4di Could not format ( ( a e. On /\ A. b e. a ( b +no (/) ) = b ) -> ( A. b e. a ( b +no (/) ) e. x <-> a C_ x ) ) : No typesetting found for |- ( ( a e. On /\ A. b e. a ( b +no (/) ) = b ) -> ( A. b e. a ( b +no (/) ) e. x <-> a C_ x ) ) with typecode |-
20 12 19 bitr3id Could not format ( ( a e. On /\ A. b e. a ( b +no (/) ) = b ) -> ( ( A. c e. (/) ( a +no c ) e. x /\ A. b e. a ( b +no (/) ) e. x ) <-> a C_ x ) ) : No typesetting found for |- ( ( a e. On /\ A. b e. a ( b +no (/) ) = b ) -> ( ( A. c e. (/) ( a +no c ) e. x /\ A. b e. a ( b +no (/) ) e. x ) <-> a C_ x ) ) with typecode |-
21 20 rabbidv Could not format ( ( a e. On /\ A. b e. a ( b +no (/) ) = b ) -> { x e. On | ( A. c e. (/) ( a +no c ) e. x /\ A. b e. a ( b +no (/) ) e. x ) } = { x e. On | a C_ x } ) : No typesetting found for |- ( ( a e. On /\ A. b e. a ( b +no (/) ) = b ) -> { x e. On | ( A. c e. (/) ( a +no c ) e. x /\ A. b e. a ( b +no (/) ) e. x ) } = { x e. On | a C_ x } ) with typecode |-
22 21 inteqd Could not format ( ( a e. On /\ A. b e. a ( b +no (/) ) = b ) -> |^| { x e. On | ( A. c e. (/) ( a +no c ) e. x /\ A. b e. a ( b +no (/) ) e. x ) } = |^| { x e. On | a C_ x } ) : No typesetting found for |- ( ( a e. On /\ A. b e. a ( b +no (/) ) = b ) -> |^| { x e. On | ( A. c e. (/) ( a +no c ) e. x /\ A. b e. a ( b +no (/) ) e. x ) } = |^| { x e. On | a C_ x } ) with typecode |-
23 intmin a On x On | a x = a
24 23 adantr Could not format ( ( a e. On /\ A. b e. a ( b +no (/) ) = b ) -> |^| { x e. On | a C_ x } = a ) : No typesetting found for |- ( ( a e. On /\ A. b e. a ( b +no (/) ) = b ) -> |^| { x e. On | a C_ x } = a ) with typecode |-
25 10 22 24 3eqtrd Could not format ( ( a e. On /\ A. b e. a ( b +no (/) ) = b ) -> ( a +no (/) ) = a ) : No typesetting found for |- ( ( a e. On /\ A. b e. a ( b +no (/) ) = b ) -> ( a +no (/) ) = a ) with typecode |-
26 25 ex Could not format ( a e. On -> ( A. b e. a ( b +no (/) ) = b -> ( a +no (/) ) = a ) ) : No typesetting found for |- ( a e. On -> ( A. b e. a ( b +no (/) ) = b -> ( a +no (/) ) = a ) ) with typecode |-
27 3 6 26 tfis3 Could not format ( A e. On -> ( A +no (/) ) = A ) : No typesetting found for |- ( A e. On -> ( A +no (/) ) = A ) with typecode |-