| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prcom |
⊢ { 𝐴 , 𝐶 } = { 𝐶 , 𝐴 } |
| 2 |
1
|
eleq1i |
⊢ ( { 𝐴 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) |
| 3 |
2
|
biimpi |
⊢ ( { 𝐴 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) → { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) |
| 4 |
3
|
adantl |
⊢ ( ( { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐴 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) → { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) |
| 5 |
|
prcom |
⊢ { 𝐵 , 𝐶 } = { 𝐶 , 𝐵 } |
| 6 |
5
|
eleq1i |
⊢ ( { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝐶 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) |
| 7 |
6
|
biimpi |
⊢ ( { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) → { 𝐶 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) |
| 8 |
7
|
adantl |
⊢ ( ( { 𝐵 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) → { 𝐶 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) |
| 9 |
4 8
|
anim12i |
⊢ ( ( ( { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐴 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝐵 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐶 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 10 |
9
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( ( { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐴 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝐵 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐶 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 11 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 12 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 13 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐺 ∈ USGraph ) |
| 14 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ) |
| 15 |
|
simpl |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) |
| 16 |
11 12 13 14 15
|
nb3grprlem1 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ( { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐴 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 17 |
|
3ancoma |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ↔ ( 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) ) |
| 18 |
17
|
biimpi |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) ) |
| 19 |
|
tpcoma |
⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐴 , 𝐶 } |
| 20 |
19
|
eqeq2i |
⊢ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ↔ ( Vtx ‘ 𝐺 ) = { 𝐵 , 𝐴 , 𝐶 } ) |
| 21 |
20
|
biimpi |
⊢ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } → ( Vtx ‘ 𝐺 ) = { 𝐵 , 𝐴 , 𝐶 } ) |
| 22 |
21
|
anim1i |
⊢ ( ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( ( Vtx ‘ 𝐺 ) = { 𝐵 , 𝐴 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) |
| 23 |
|
simprr |
⊢ ( ( ( 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐵 , 𝐴 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐺 ∈ USGraph ) |
| 24 |
|
simprl |
⊢ ( ( ( 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐵 , 𝐴 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( Vtx ‘ 𝐺 ) = { 𝐵 , 𝐴 , 𝐶 } ) |
| 25 |
|
simpl |
⊢ ( ( ( 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐵 , 𝐴 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) ) |
| 26 |
11 12 23 24 25
|
nb3grprlem1 |
⊢ ( ( ( 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐵 , 𝐴 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ↔ ( { 𝐵 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 27 |
18 22 26
|
syl2an |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ↔ ( { 𝐵 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 28 |
16 27
|
anbi12d |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ) ↔ ( ( { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐴 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝐵 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
| 29 |
|
3anrot |
⊢ ( ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) |
| 30 |
29
|
biimpri |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) |
| 31 |
|
tprot |
⊢ { 𝐶 , 𝐴 , 𝐵 } = { 𝐴 , 𝐵 , 𝐶 } |
| 32 |
31
|
eqcomi |
⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐶 , 𝐴 , 𝐵 } |
| 33 |
32
|
eqeq2i |
⊢ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ↔ ( Vtx ‘ 𝐺 ) = { 𝐶 , 𝐴 , 𝐵 } ) |
| 34 |
33
|
anbi1i |
⊢ ( ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ↔ ( ( Vtx ‘ 𝐺 ) = { 𝐶 , 𝐴 , 𝐵 } ∧ 𝐺 ∈ USGraph ) ) |
| 35 |
34
|
biimpi |
⊢ ( ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( ( Vtx ‘ 𝐺 ) = { 𝐶 , 𝐴 , 𝐵 } ∧ 𝐺 ∈ USGraph ) ) |
| 36 |
|
simprr |
⊢ ( ( ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐶 , 𝐴 , 𝐵 } ∧ 𝐺 ∈ USGraph ) ) → 𝐺 ∈ USGraph ) |
| 37 |
|
simprl |
⊢ ( ( ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐶 , 𝐴 , 𝐵 } ∧ 𝐺 ∈ USGraph ) ) → ( Vtx ‘ 𝐺 ) = { 𝐶 , 𝐴 , 𝐵 } ) |
| 38 |
|
simpl |
⊢ ( ( ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐶 , 𝐴 , 𝐵 } ∧ 𝐺 ∈ USGraph ) ) → ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) |
| 39 |
11 12 36 37 38
|
nb3grprlem1 |
⊢ ( ( ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐶 , 𝐴 , 𝐵 } ∧ 𝐺 ∈ USGraph ) ) → ( ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ↔ ( { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐶 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 40 |
30 35 39
|
syl2an |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ↔ ( { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐶 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 41 |
10 28 40
|
3imtr4d |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ) → ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ) ) |
| 42 |
41
|
pm4.71d |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ) ↔ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ) ∧ ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ) ) ) |
| 43 |
|
df-3an |
⊢ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ) ↔ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ) ∧ ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ) ) |
| 44 |
42 43
|
bitr4di |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ) ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ) ) ) |