| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nb3grpr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
nb3grpr.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 3 |
|
nb3grpr.g |
⊢ ( 𝜑 → 𝐺 ∈ USGraph ) |
| 4 |
|
nb3grpr.t |
⊢ ( 𝜑 → 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) |
| 5 |
|
nb3grpr.s |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) |
| 6 |
|
prid1g |
⊢ ( 𝐵 ∈ 𝑌 → 𝐵 ∈ { 𝐵 , 𝐶 } ) |
| 7 |
6
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐵 ∈ { 𝐵 , 𝐶 } ) |
| 8 |
5 7
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ { 𝐵 , 𝐶 } ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → 𝐵 ∈ { 𝐵 , 𝐶 } ) |
| 10 |
|
eleq2 |
⊢ ( { 𝐵 , 𝐶 } = ( 𝐺 NeighbVtx 𝐴 ) → ( 𝐵 ∈ { 𝐵 , 𝐶 } ↔ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
| 11 |
10
|
eqcoms |
⊢ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } → ( 𝐵 ∈ { 𝐵 , 𝐶 } ↔ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → ( 𝐵 ∈ { 𝐵 , 𝐶 } ↔ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
| 13 |
9 12
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) |
| 14 |
2
|
nbusgreledg |
⊢ ( 𝐺 ∈ USGraph → ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐵 , 𝐴 } ∈ 𝐸 ) ) |
| 15 |
|
prcom |
⊢ { 𝐵 , 𝐴 } = { 𝐴 , 𝐵 } |
| 16 |
15
|
a1i |
⊢ ( 𝐺 ∈ USGraph → { 𝐵 , 𝐴 } = { 𝐴 , 𝐵 } ) |
| 17 |
16
|
eleq1d |
⊢ ( 𝐺 ∈ USGraph → ( { 𝐵 , 𝐴 } ∈ 𝐸 ↔ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |
| 18 |
14 17
|
bitrd |
⊢ ( 𝐺 ∈ USGraph → ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |
| 19 |
3 18
|
syl |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |
| 21 |
13 20
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → { 𝐴 , 𝐵 } ∈ 𝐸 ) |
| 22 |
|
prid2g |
⊢ ( 𝐶 ∈ 𝑍 → 𝐶 ∈ { 𝐵 , 𝐶 } ) |
| 23 |
22
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐶 ∈ { 𝐵 , 𝐶 } ) |
| 24 |
5 23
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ { 𝐵 , 𝐶 } ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → 𝐶 ∈ { 𝐵 , 𝐶 } ) |
| 26 |
|
eleq2 |
⊢ ( { 𝐵 , 𝐶 } = ( 𝐺 NeighbVtx 𝐴 ) → ( 𝐶 ∈ { 𝐵 , 𝐶 } ↔ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
| 27 |
26
|
eqcoms |
⊢ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } → ( 𝐶 ∈ { 𝐵 , 𝐶 } ↔ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → ( 𝐶 ∈ { 𝐵 , 𝐶 } ↔ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
| 29 |
25 28
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) |
| 30 |
2
|
nbusgreledg |
⊢ ( 𝐺 ∈ USGraph → ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) |
| 31 |
|
prcom |
⊢ { 𝐶 , 𝐴 } = { 𝐴 , 𝐶 } |
| 32 |
31
|
a1i |
⊢ ( 𝐺 ∈ USGraph → { 𝐶 , 𝐴 } = { 𝐴 , 𝐶 } ) |
| 33 |
32
|
eleq1d |
⊢ ( 𝐺 ∈ USGraph → ( { 𝐶 , 𝐴 } ∈ 𝐸 ↔ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) |
| 34 |
30 33
|
bitrd |
⊢ ( 𝐺 ∈ USGraph → ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) |
| 35 |
3 34
|
syl |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) |
| 37 |
29 36
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → { 𝐴 , 𝐶 } ∈ 𝐸 ) |
| 38 |
21 37
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) |
| 39 |
1 2
|
nbusgr |
⊢ ( 𝐺 ∈ USGraph → ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 ∈ 𝑉 ∣ { 𝐴 , 𝑣 } ∈ 𝐸 } ) |
| 40 |
3 39
|
syl |
⊢ ( 𝜑 → ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 ∈ 𝑉 ∣ { 𝐴 , 𝑣 } ∈ 𝐸 } ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 ∈ 𝑉 ∣ { 𝐴 , 𝑣 } ∈ 𝐸 } ) |
| 42 |
|
eleq2 |
⊢ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } → ( 𝑣 ∈ 𝑉 ↔ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 43 |
4 42
|
syl |
⊢ ( 𝜑 → ( 𝑣 ∈ 𝑉 ↔ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 ∈ 𝑉 ↔ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 45 |
|
vex |
⊢ 𝑣 ∈ V |
| 46 |
45
|
eltp |
⊢ ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝑣 = 𝐴 ∨ 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) |
| 47 |
2
|
usgredgne |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) → 𝐴 ≠ 𝑣 ) |
| 48 |
|
df-ne |
⊢ ( 𝐴 ≠ 𝑣 ↔ ¬ 𝐴 = 𝑣 ) |
| 49 |
|
pm2.24 |
⊢ ( 𝐴 = 𝑣 → ( ¬ 𝐴 = 𝑣 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) |
| 50 |
49
|
eqcoms |
⊢ ( 𝑣 = 𝐴 → ( ¬ 𝐴 = 𝑣 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) |
| 51 |
50
|
com12 |
⊢ ( ¬ 𝐴 = 𝑣 → ( 𝑣 = 𝐴 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) |
| 52 |
48 51
|
sylbi |
⊢ ( 𝐴 ≠ 𝑣 → ( 𝑣 = 𝐴 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) |
| 53 |
47 52
|
syl |
⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) → ( 𝑣 = 𝐴 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) |
| 54 |
53
|
ex |
⊢ ( 𝐺 ∈ USGraph → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐴 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
| 55 |
3 54
|
syl |
⊢ ( 𝜑 → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐴 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐴 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
| 57 |
56
|
com3r |
⊢ ( 𝑣 = 𝐴 → ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
| 58 |
|
orc |
⊢ ( 𝑣 = 𝐵 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) |
| 59 |
58
|
2a1d |
⊢ ( 𝑣 = 𝐵 → ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
| 60 |
|
olc |
⊢ ( 𝑣 = 𝐶 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) |
| 61 |
60
|
2a1d |
⊢ ( 𝑣 = 𝐶 → ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
| 62 |
57 59 61
|
3jaoi |
⊢ ( ( 𝑣 = 𝐴 ∨ 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) → ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
| 63 |
46 62
|
sylbi |
⊢ ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
| 64 |
63
|
com12 |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
| 65 |
44 64
|
sylbid |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 ∈ 𝑉 → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
| 66 |
65
|
impd |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) |
| 67 |
|
eqid |
⊢ 𝐵 = 𝐵 |
| 68 |
67
|
3mix2i |
⊢ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶 ) |
| 69 |
5
|
simp2d |
⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) |
| 70 |
|
eltpg |
⊢ ( 𝐵 ∈ 𝑌 → ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶 ) ) ) |
| 71 |
69 70
|
syl |
⊢ ( 𝜑 → ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶 ) ) ) |
| 72 |
68 71
|
mpbiri |
⊢ ( 𝜑 → 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 73 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 = 𝐵 ) → 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 74 |
|
eleq1 |
⊢ ( 𝑣 = 𝐵 → ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 75 |
74
|
bicomd |
⊢ ( 𝑣 = 𝐵 → ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 76 |
75
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑣 = 𝐵 ) → ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 77 |
73 76
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑣 = 𝐵 ) → 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 78 |
42
|
bicomd |
⊢ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } → ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑣 ∈ 𝑉 ) ) |
| 79 |
4 78
|
syl |
⊢ ( 𝜑 → ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑣 ∈ 𝑉 ) ) |
| 80 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 = 𝐵 ) → ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑣 ∈ 𝑉 ) ) |
| 81 |
77 80
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑣 = 𝐵 ) → 𝑣 ∈ 𝑉 ) |
| 82 |
81
|
ex |
⊢ ( 𝜑 → ( 𝑣 = 𝐵 → 𝑣 ∈ 𝑉 ) ) |
| 83 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 = 𝐵 → 𝑣 ∈ 𝑉 ) ) |
| 84 |
83
|
impcom |
⊢ ( ( 𝑣 = 𝐵 ∧ ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) → 𝑣 ∈ 𝑉 ) |
| 85 |
|
preq2 |
⊢ ( 𝐵 = 𝑣 → { 𝐴 , 𝐵 } = { 𝐴 , 𝑣 } ) |
| 86 |
85
|
eleq1d |
⊢ ( 𝐵 = 𝑣 → ( { 𝐴 , 𝐵 } ∈ 𝐸 ↔ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
| 87 |
86
|
eqcoms |
⊢ ( 𝑣 = 𝐵 → ( { 𝐴 , 𝐵 } ∈ 𝐸 ↔ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
| 88 |
87
|
biimpcd |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( 𝑣 = 𝐵 → { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
| 89 |
88
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 = 𝐵 → { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
| 90 |
89
|
impcom |
⊢ ( ( 𝑣 = 𝐵 ∧ ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) → { 𝐴 , 𝑣 } ∈ 𝐸 ) |
| 91 |
84 90
|
jca |
⊢ ( ( 𝑣 = 𝐵 ∧ ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) → ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
| 92 |
91
|
ex |
⊢ ( 𝑣 = 𝐵 → ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) ) |
| 93 |
|
tpid3g |
⊢ ( 𝐶 ∈ 𝑍 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 94 |
93
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 95 |
5 94
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 96 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 = 𝐶 ) → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 97 |
|
eleq1 |
⊢ ( 𝑣 = 𝐶 → ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 98 |
97
|
bicomd |
⊢ ( 𝑣 = 𝐶 → ( 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 99 |
98
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑣 = 𝐶 ) → ( 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 100 |
96 99
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑣 = 𝐶 ) → 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 101 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 = 𝐶 ) → ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑣 ∈ 𝑉 ) ) |
| 102 |
100 101
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑣 = 𝐶 ) → 𝑣 ∈ 𝑉 ) |
| 103 |
102
|
ex |
⊢ ( 𝜑 → ( 𝑣 = 𝐶 → 𝑣 ∈ 𝑉 ) ) |
| 104 |
103
|
adantr |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 = 𝐶 → 𝑣 ∈ 𝑉 ) ) |
| 105 |
104
|
impcom |
⊢ ( ( 𝑣 = 𝐶 ∧ ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) → 𝑣 ∈ 𝑉 ) |
| 106 |
|
preq2 |
⊢ ( 𝐶 = 𝑣 → { 𝐴 , 𝐶 } = { 𝐴 , 𝑣 } ) |
| 107 |
106
|
eleq1d |
⊢ ( 𝐶 = 𝑣 → ( { 𝐴 , 𝐶 } ∈ 𝐸 ↔ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
| 108 |
107
|
eqcoms |
⊢ ( 𝑣 = 𝐶 → ( { 𝐴 , 𝐶 } ∈ 𝐸 ↔ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
| 109 |
108
|
biimpcd |
⊢ ( { 𝐴 , 𝐶 } ∈ 𝐸 → ( 𝑣 = 𝐶 → { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
| 110 |
109
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 = 𝐶 → { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
| 111 |
110
|
impcom |
⊢ ( ( 𝑣 = 𝐶 ∧ ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) → { 𝐴 , 𝑣 } ∈ 𝐸 ) |
| 112 |
105 111
|
jca |
⊢ ( ( 𝑣 = 𝐶 ∧ ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) → ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
| 113 |
112
|
ex |
⊢ ( 𝑣 = 𝐶 → ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) ) |
| 114 |
92 113
|
jaoi |
⊢ ( ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) → ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) ) |
| 115 |
114
|
com12 |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) → ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) ) |
| 116 |
66 115
|
impbid |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) ↔ ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) |
| 117 |
116
|
abbidv |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → { 𝑣 ∣ ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) } = { 𝑣 ∣ ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) } ) |
| 118 |
|
df-rab |
⊢ { 𝑣 ∈ 𝑉 ∣ { 𝐴 , 𝑣 } ∈ 𝐸 } = { 𝑣 ∣ ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) } |
| 119 |
|
dfpr2 |
⊢ { 𝐵 , 𝐶 } = { 𝑣 ∣ ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) } |
| 120 |
117 118 119
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → { 𝑣 ∈ 𝑉 ∣ { 𝐴 , 𝑣 } ∈ 𝐸 } = { 𝐵 , 𝐶 } ) |
| 121 |
41 120
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) |
| 122 |
38 121
|
impbida |
⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) |