Metamath Proof Explorer


Theorem nb3grprlem1

Description: Lemma 1 for nb3grpr . (Contributed by Alexander van der Vekens, 15-Oct-2017) (Revised by AV, 28-Oct-2020)

Ref Expression
Hypotheses nb3grpr.v V=VtxG
nb3grpr.e E=EdgG
nb3grpr.g φGUSGraph
nb3grpr.t φV=ABC
nb3grpr.s φAXBYCZ
Assertion nb3grprlem1 φGNeighbVtxA=BCABEACE

Proof

Step Hyp Ref Expression
1 nb3grpr.v V=VtxG
2 nb3grpr.e E=EdgG
3 nb3grpr.g φGUSGraph
4 nb3grpr.t φV=ABC
5 nb3grpr.s φAXBYCZ
6 prid1g BYBBC
7 6 3ad2ant2 AXBYCZBBC
8 5 7 syl φBBC
9 8 adantr φGNeighbVtxA=BCBBC
10 eleq2 BC=GNeighbVtxABBCBGNeighbVtxA
11 10 eqcoms GNeighbVtxA=BCBBCBGNeighbVtxA
12 11 adantl φGNeighbVtxA=BCBBCBGNeighbVtxA
13 9 12 mpbid φGNeighbVtxA=BCBGNeighbVtxA
14 2 nbusgreledg GUSGraphBGNeighbVtxABAE
15 prcom BA=AB
16 15 a1i GUSGraphBA=AB
17 16 eleq1d GUSGraphBAEABE
18 14 17 bitrd GUSGraphBGNeighbVtxAABE
19 3 18 syl φBGNeighbVtxAABE
20 19 adantr φGNeighbVtxA=BCBGNeighbVtxAABE
21 13 20 mpbid φGNeighbVtxA=BCABE
22 prid2g CZCBC
23 22 3ad2ant3 AXBYCZCBC
24 5 23 syl φCBC
25 24 adantr φGNeighbVtxA=BCCBC
26 eleq2 BC=GNeighbVtxACBCCGNeighbVtxA
27 26 eqcoms GNeighbVtxA=BCCBCCGNeighbVtxA
28 27 adantl φGNeighbVtxA=BCCBCCGNeighbVtxA
29 25 28 mpbid φGNeighbVtxA=BCCGNeighbVtxA
30 2 nbusgreledg GUSGraphCGNeighbVtxACAE
31 prcom CA=AC
32 31 a1i GUSGraphCA=AC
33 32 eleq1d GUSGraphCAEACE
34 30 33 bitrd GUSGraphCGNeighbVtxAACE
35 3 34 syl φCGNeighbVtxAACE
36 35 adantr φGNeighbVtxA=BCCGNeighbVtxAACE
37 29 36 mpbid φGNeighbVtxA=BCACE
38 21 37 jca φGNeighbVtxA=BCABEACE
39 1 2 nbusgr GUSGraphGNeighbVtxA=vV|AvE
40 3 39 syl φGNeighbVtxA=vV|AvE
41 40 adantr φABEACEGNeighbVtxA=vV|AvE
42 eleq2 V=ABCvVvABC
43 4 42 syl φvVvABC
44 43 adantr φABEACEvVvABC
45 vex vV
46 45 eltp vABCv=Av=Bv=C
47 2 usgredgne GUSGraphAvEAv
48 df-ne Av¬A=v
49 pm2.24 A=v¬A=vv=Bv=C
50 49 eqcoms v=A¬A=vv=Bv=C
51 50 com12 ¬A=vv=Av=Bv=C
52 48 51 sylbi Avv=Av=Bv=C
53 47 52 syl GUSGraphAvEv=Av=Bv=C
54 53 ex GUSGraphAvEv=Av=Bv=C
55 3 54 syl φAvEv=Av=Bv=C
56 55 adantr φABEACEAvEv=Av=Bv=C
57 56 com3r v=AφABEACEAvEv=Bv=C
58 orc v=Bv=Bv=C
59 58 2a1d v=BφABEACEAvEv=Bv=C
60 olc v=Cv=Bv=C
61 60 2a1d v=CφABEACEAvEv=Bv=C
62 57 59 61 3jaoi v=Av=Bv=CφABEACEAvEv=Bv=C
63 46 62 sylbi vABCφABEACEAvEv=Bv=C
64 63 com12 φABEACEvABCAvEv=Bv=C
65 44 64 sylbid φABEACEvVAvEv=Bv=C
66 65 impd φABEACEvVAvEv=Bv=C
67 eqid B=B
68 67 3mix2i B=AB=BB=C
69 5 simp2d φBY
70 eltpg BYBABCB=AB=BB=C
71 69 70 syl φBABCB=AB=BB=C
72 68 71 mpbiri φBABC
73 72 adantr φv=BBABC
74 eleq1 v=BvABCBABC
75 74 bicomd v=BBABCvABC
76 75 adantl φv=BBABCvABC
77 73 76 mpbid φv=BvABC
78 42 bicomd V=ABCvABCvV
79 4 78 syl φvABCvV
80 79 adantr φv=BvABCvV
81 77 80 mpbid φv=BvV
82 81 ex φv=BvV
83 82 adantr φABEACEv=BvV
84 83 impcom v=BφABEACEvV
85 preq2 B=vAB=Av
86 85 eleq1d B=vABEAvE
87 86 eqcoms v=BABEAvE
88 87 biimpcd ABEv=BAvE
89 88 ad2antrl φABEACEv=BAvE
90 89 impcom v=BφABEACEAvE
91 84 90 jca v=BφABEACEvVAvE
92 91 ex v=BφABEACEvVAvE
93 tpid3g CZCABC
94 93 3ad2ant3 AXBYCZCABC
95 5 94 syl φCABC
96 95 adantr φv=CCABC
97 eleq1 v=CvABCCABC
98 97 bicomd v=CCABCvABC
99 98 adantl φv=CCABCvABC
100 96 99 mpbid φv=CvABC
101 79 adantr φv=CvABCvV
102 100 101 mpbid φv=CvV
103 102 ex φv=CvV
104 103 adantr φABEACEv=CvV
105 104 impcom v=CφABEACEvV
106 preq2 C=vAC=Av
107 106 eleq1d C=vACEAvE
108 107 eqcoms v=CACEAvE
109 108 biimpcd ACEv=CAvE
110 109 ad2antll φABEACEv=CAvE
111 110 impcom v=CφABEACEAvE
112 105 111 jca v=CφABEACEvVAvE
113 112 ex v=CφABEACEvVAvE
114 92 113 jaoi v=Bv=CφABEACEvVAvE
115 114 com12 φABEACEv=Bv=CvVAvE
116 66 115 impbid φABEACEvVAvEv=Bv=C
117 116 abbidv φABEACEv|vVAvE=v|v=Bv=C
118 df-rab vV|AvE=v|vVAvE
119 dfpr2 BC=v|v=Bv=C
120 117 118 119 3eqtr4g φABEACEvV|AvE=BC
121 41 120 eqtrd φABEACEGNeighbVtxA=BC
122 38 121 impbida φGNeighbVtxA=BCABEACE