| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nb3grpr.v |
|- V = ( Vtx ` G ) |
| 2 |
|
nb3grpr.e |
|- E = ( Edg ` G ) |
| 3 |
|
nb3grpr.g |
|- ( ph -> G e. USGraph ) |
| 4 |
|
nb3grpr.t |
|- ( ph -> V = { A , B , C } ) |
| 5 |
|
nb3grpr.s |
|- ( ph -> ( A e. X /\ B e. Y /\ C e. Z ) ) |
| 6 |
|
prid1g |
|- ( B e. Y -> B e. { B , C } ) |
| 7 |
6
|
3ad2ant2 |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> B e. { B , C } ) |
| 8 |
5 7
|
syl |
|- ( ph -> B e. { B , C } ) |
| 9 |
8
|
adantr |
|- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> B e. { B , C } ) |
| 10 |
|
eleq2 |
|- ( { B , C } = ( G NeighbVtx A ) -> ( B e. { B , C } <-> B e. ( G NeighbVtx A ) ) ) |
| 11 |
10
|
eqcoms |
|- ( ( G NeighbVtx A ) = { B , C } -> ( B e. { B , C } <-> B e. ( G NeighbVtx A ) ) ) |
| 12 |
11
|
adantl |
|- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> ( B e. { B , C } <-> B e. ( G NeighbVtx A ) ) ) |
| 13 |
9 12
|
mpbid |
|- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> B e. ( G NeighbVtx A ) ) |
| 14 |
2
|
nbusgreledg |
|- ( G e. USGraph -> ( B e. ( G NeighbVtx A ) <-> { B , A } e. E ) ) |
| 15 |
|
prcom |
|- { B , A } = { A , B } |
| 16 |
15
|
a1i |
|- ( G e. USGraph -> { B , A } = { A , B } ) |
| 17 |
16
|
eleq1d |
|- ( G e. USGraph -> ( { B , A } e. E <-> { A , B } e. E ) ) |
| 18 |
14 17
|
bitrd |
|- ( G e. USGraph -> ( B e. ( G NeighbVtx A ) <-> { A , B } e. E ) ) |
| 19 |
3 18
|
syl |
|- ( ph -> ( B e. ( G NeighbVtx A ) <-> { A , B } e. E ) ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> ( B e. ( G NeighbVtx A ) <-> { A , B } e. E ) ) |
| 21 |
13 20
|
mpbid |
|- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> { A , B } e. E ) |
| 22 |
|
prid2g |
|- ( C e. Z -> C e. { B , C } ) |
| 23 |
22
|
3ad2ant3 |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> C e. { B , C } ) |
| 24 |
5 23
|
syl |
|- ( ph -> C e. { B , C } ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> C e. { B , C } ) |
| 26 |
|
eleq2 |
|- ( { B , C } = ( G NeighbVtx A ) -> ( C e. { B , C } <-> C e. ( G NeighbVtx A ) ) ) |
| 27 |
26
|
eqcoms |
|- ( ( G NeighbVtx A ) = { B , C } -> ( C e. { B , C } <-> C e. ( G NeighbVtx A ) ) ) |
| 28 |
27
|
adantl |
|- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> ( C e. { B , C } <-> C e. ( G NeighbVtx A ) ) ) |
| 29 |
25 28
|
mpbid |
|- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> C e. ( G NeighbVtx A ) ) |
| 30 |
2
|
nbusgreledg |
|- ( G e. USGraph -> ( C e. ( G NeighbVtx A ) <-> { C , A } e. E ) ) |
| 31 |
|
prcom |
|- { C , A } = { A , C } |
| 32 |
31
|
a1i |
|- ( G e. USGraph -> { C , A } = { A , C } ) |
| 33 |
32
|
eleq1d |
|- ( G e. USGraph -> ( { C , A } e. E <-> { A , C } e. E ) ) |
| 34 |
30 33
|
bitrd |
|- ( G e. USGraph -> ( C e. ( G NeighbVtx A ) <-> { A , C } e. E ) ) |
| 35 |
3 34
|
syl |
|- ( ph -> ( C e. ( G NeighbVtx A ) <-> { A , C } e. E ) ) |
| 36 |
35
|
adantr |
|- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> ( C e. ( G NeighbVtx A ) <-> { A , C } e. E ) ) |
| 37 |
29 36
|
mpbid |
|- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> { A , C } e. E ) |
| 38 |
21 37
|
jca |
|- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> ( { A , B } e. E /\ { A , C } e. E ) ) |
| 39 |
1 2
|
nbusgr |
|- ( G e. USGraph -> ( G NeighbVtx A ) = { v e. V | { A , v } e. E } ) |
| 40 |
3 39
|
syl |
|- ( ph -> ( G NeighbVtx A ) = { v e. V | { A , v } e. E } ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( G NeighbVtx A ) = { v e. V | { A , v } e. E } ) |
| 42 |
|
eleq2 |
|- ( V = { A , B , C } -> ( v e. V <-> v e. { A , B , C } ) ) |
| 43 |
4 42
|
syl |
|- ( ph -> ( v e. V <-> v e. { A , B , C } ) ) |
| 44 |
43
|
adantr |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v e. V <-> v e. { A , B , C } ) ) |
| 45 |
|
vex |
|- v e. _V |
| 46 |
45
|
eltp |
|- ( v e. { A , B , C } <-> ( v = A \/ v = B \/ v = C ) ) |
| 47 |
2
|
usgredgne |
|- ( ( G e. USGraph /\ { A , v } e. E ) -> A =/= v ) |
| 48 |
|
df-ne |
|- ( A =/= v <-> -. A = v ) |
| 49 |
|
pm2.24 |
|- ( A = v -> ( -. A = v -> ( v = B \/ v = C ) ) ) |
| 50 |
49
|
eqcoms |
|- ( v = A -> ( -. A = v -> ( v = B \/ v = C ) ) ) |
| 51 |
50
|
com12 |
|- ( -. A = v -> ( v = A -> ( v = B \/ v = C ) ) ) |
| 52 |
48 51
|
sylbi |
|- ( A =/= v -> ( v = A -> ( v = B \/ v = C ) ) ) |
| 53 |
47 52
|
syl |
|- ( ( G e. USGraph /\ { A , v } e. E ) -> ( v = A -> ( v = B \/ v = C ) ) ) |
| 54 |
53
|
ex |
|- ( G e. USGraph -> ( { A , v } e. E -> ( v = A -> ( v = B \/ v = C ) ) ) ) |
| 55 |
3 54
|
syl |
|- ( ph -> ( { A , v } e. E -> ( v = A -> ( v = B \/ v = C ) ) ) ) |
| 56 |
55
|
adantr |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( { A , v } e. E -> ( v = A -> ( v = B \/ v = C ) ) ) ) |
| 57 |
56
|
com3r |
|- ( v = A -> ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( { A , v } e. E -> ( v = B \/ v = C ) ) ) ) |
| 58 |
|
orc |
|- ( v = B -> ( v = B \/ v = C ) ) |
| 59 |
58
|
2a1d |
|- ( v = B -> ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( { A , v } e. E -> ( v = B \/ v = C ) ) ) ) |
| 60 |
|
olc |
|- ( v = C -> ( v = B \/ v = C ) ) |
| 61 |
60
|
2a1d |
|- ( v = C -> ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( { A , v } e. E -> ( v = B \/ v = C ) ) ) ) |
| 62 |
57 59 61
|
3jaoi |
|- ( ( v = A \/ v = B \/ v = C ) -> ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( { A , v } e. E -> ( v = B \/ v = C ) ) ) ) |
| 63 |
46 62
|
sylbi |
|- ( v e. { A , B , C } -> ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( { A , v } e. E -> ( v = B \/ v = C ) ) ) ) |
| 64 |
63
|
com12 |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v e. { A , B , C } -> ( { A , v } e. E -> ( v = B \/ v = C ) ) ) ) |
| 65 |
44 64
|
sylbid |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v e. V -> ( { A , v } e. E -> ( v = B \/ v = C ) ) ) ) |
| 66 |
65
|
impd |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( ( v e. V /\ { A , v } e. E ) -> ( v = B \/ v = C ) ) ) |
| 67 |
|
eqid |
|- B = B |
| 68 |
67
|
3mix2i |
|- ( B = A \/ B = B \/ B = C ) |
| 69 |
5
|
simp2d |
|- ( ph -> B e. Y ) |
| 70 |
|
eltpg |
|- ( B e. Y -> ( B e. { A , B , C } <-> ( B = A \/ B = B \/ B = C ) ) ) |
| 71 |
69 70
|
syl |
|- ( ph -> ( B e. { A , B , C } <-> ( B = A \/ B = B \/ B = C ) ) ) |
| 72 |
68 71
|
mpbiri |
|- ( ph -> B e. { A , B , C } ) |
| 73 |
72
|
adantr |
|- ( ( ph /\ v = B ) -> B e. { A , B , C } ) |
| 74 |
|
eleq1 |
|- ( v = B -> ( v e. { A , B , C } <-> B e. { A , B , C } ) ) |
| 75 |
74
|
bicomd |
|- ( v = B -> ( B e. { A , B , C } <-> v e. { A , B , C } ) ) |
| 76 |
75
|
adantl |
|- ( ( ph /\ v = B ) -> ( B e. { A , B , C } <-> v e. { A , B , C } ) ) |
| 77 |
73 76
|
mpbid |
|- ( ( ph /\ v = B ) -> v e. { A , B , C } ) |
| 78 |
42
|
bicomd |
|- ( V = { A , B , C } -> ( v e. { A , B , C } <-> v e. V ) ) |
| 79 |
4 78
|
syl |
|- ( ph -> ( v e. { A , B , C } <-> v e. V ) ) |
| 80 |
79
|
adantr |
|- ( ( ph /\ v = B ) -> ( v e. { A , B , C } <-> v e. V ) ) |
| 81 |
77 80
|
mpbid |
|- ( ( ph /\ v = B ) -> v e. V ) |
| 82 |
81
|
ex |
|- ( ph -> ( v = B -> v e. V ) ) |
| 83 |
82
|
adantr |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v = B -> v e. V ) ) |
| 84 |
83
|
impcom |
|- ( ( v = B /\ ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) ) -> v e. V ) |
| 85 |
|
preq2 |
|- ( B = v -> { A , B } = { A , v } ) |
| 86 |
85
|
eleq1d |
|- ( B = v -> ( { A , B } e. E <-> { A , v } e. E ) ) |
| 87 |
86
|
eqcoms |
|- ( v = B -> ( { A , B } e. E <-> { A , v } e. E ) ) |
| 88 |
87
|
biimpcd |
|- ( { A , B } e. E -> ( v = B -> { A , v } e. E ) ) |
| 89 |
88
|
ad2antrl |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v = B -> { A , v } e. E ) ) |
| 90 |
89
|
impcom |
|- ( ( v = B /\ ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) ) -> { A , v } e. E ) |
| 91 |
84 90
|
jca |
|- ( ( v = B /\ ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) ) -> ( v e. V /\ { A , v } e. E ) ) |
| 92 |
91
|
ex |
|- ( v = B -> ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v e. V /\ { A , v } e. E ) ) ) |
| 93 |
|
tpid3g |
|- ( C e. Z -> C e. { A , B , C } ) |
| 94 |
93
|
3ad2ant3 |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> C e. { A , B , C } ) |
| 95 |
5 94
|
syl |
|- ( ph -> C e. { A , B , C } ) |
| 96 |
95
|
adantr |
|- ( ( ph /\ v = C ) -> C e. { A , B , C } ) |
| 97 |
|
eleq1 |
|- ( v = C -> ( v e. { A , B , C } <-> C e. { A , B , C } ) ) |
| 98 |
97
|
bicomd |
|- ( v = C -> ( C e. { A , B , C } <-> v e. { A , B , C } ) ) |
| 99 |
98
|
adantl |
|- ( ( ph /\ v = C ) -> ( C e. { A , B , C } <-> v e. { A , B , C } ) ) |
| 100 |
96 99
|
mpbid |
|- ( ( ph /\ v = C ) -> v e. { A , B , C } ) |
| 101 |
79
|
adantr |
|- ( ( ph /\ v = C ) -> ( v e. { A , B , C } <-> v e. V ) ) |
| 102 |
100 101
|
mpbid |
|- ( ( ph /\ v = C ) -> v e. V ) |
| 103 |
102
|
ex |
|- ( ph -> ( v = C -> v e. V ) ) |
| 104 |
103
|
adantr |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v = C -> v e. V ) ) |
| 105 |
104
|
impcom |
|- ( ( v = C /\ ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) ) -> v e. V ) |
| 106 |
|
preq2 |
|- ( C = v -> { A , C } = { A , v } ) |
| 107 |
106
|
eleq1d |
|- ( C = v -> ( { A , C } e. E <-> { A , v } e. E ) ) |
| 108 |
107
|
eqcoms |
|- ( v = C -> ( { A , C } e. E <-> { A , v } e. E ) ) |
| 109 |
108
|
biimpcd |
|- ( { A , C } e. E -> ( v = C -> { A , v } e. E ) ) |
| 110 |
109
|
ad2antll |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v = C -> { A , v } e. E ) ) |
| 111 |
110
|
impcom |
|- ( ( v = C /\ ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) ) -> { A , v } e. E ) |
| 112 |
105 111
|
jca |
|- ( ( v = C /\ ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) ) -> ( v e. V /\ { A , v } e. E ) ) |
| 113 |
112
|
ex |
|- ( v = C -> ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v e. V /\ { A , v } e. E ) ) ) |
| 114 |
92 113
|
jaoi |
|- ( ( v = B \/ v = C ) -> ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v e. V /\ { A , v } e. E ) ) ) |
| 115 |
114
|
com12 |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( ( v = B \/ v = C ) -> ( v e. V /\ { A , v } e. E ) ) ) |
| 116 |
66 115
|
impbid |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( ( v e. V /\ { A , v } e. E ) <-> ( v = B \/ v = C ) ) ) |
| 117 |
116
|
abbidv |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> { v | ( v e. V /\ { A , v } e. E ) } = { v | ( v = B \/ v = C ) } ) |
| 118 |
|
df-rab |
|- { v e. V | { A , v } e. E } = { v | ( v e. V /\ { A , v } e. E ) } |
| 119 |
|
dfpr2 |
|- { B , C } = { v | ( v = B \/ v = C ) } |
| 120 |
117 118 119
|
3eqtr4g |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> { v e. V | { A , v } e. E } = { B , C } ) |
| 121 |
41 120
|
eqtrd |
|- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( G NeighbVtx A ) = { B , C } ) |
| 122 |
38 121
|
impbida |
|- ( ph -> ( ( G NeighbVtx A ) = { B , C } <-> ( { A , B } e. E /\ { A , C } e. E ) ) ) |