| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nb3grpr.v |
|- V = ( Vtx ` G ) |
| 2 |
|
nb3grpr.e |
|- E = ( Edg ` G ) |
| 3 |
|
nb3grpr.g |
|- ( ph -> G e. USGraph ) |
| 4 |
|
nb3grpr.t |
|- ( ph -> V = { A , B , C } ) |
| 5 |
|
nb3grpr.s |
|- ( ph -> ( A e. X /\ B e. Y /\ C e. Z ) ) |
| 6 |
|
nb3grpr.n |
|- ( ph -> ( A =/= B /\ A =/= C /\ B =/= C ) ) |
| 7 |
|
sneq |
|- ( v = A -> { v } = { A } ) |
| 8 |
7
|
difeq2d |
|- ( v = A -> ( { A , B , C } \ { v } ) = ( { A , B , C } \ { A } ) ) |
| 9 |
|
preq1 |
|- ( v = A -> { v , w } = { A , w } ) |
| 10 |
9
|
eqeq2d |
|- ( v = A -> ( ( G NeighbVtx A ) = { v , w } <-> ( G NeighbVtx A ) = { A , w } ) ) |
| 11 |
8 10
|
rexeqbidv |
|- ( v = A -> ( E. w e. ( { A , B , C } \ { v } ) ( G NeighbVtx A ) = { v , w } <-> E. w e. ( { A , B , C } \ { A } ) ( G NeighbVtx A ) = { A , w } ) ) |
| 12 |
|
sneq |
|- ( v = B -> { v } = { B } ) |
| 13 |
12
|
difeq2d |
|- ( v = B -> ( { A , B , C } \ { v } ) = ( { A , B , C } \ { B } ) ) |
| 14 |
|
preq1 |
|- ( v = B -> { v , w } = { B , w } ) |
| 15 |
14
|
eqeq2d |
|- ( v = B -> ( ( G NeighbVtx A ) = { v , w } <-> ( G NeighbVtx A ) = { B , w } ) ) |
| 16 |
13 15
|
rexeqbidv |
|- ( v = B -> ( E. w e. ( { A , B , C } \ { v } ) ( G NeighbVtx A ) = { v , w } <-> E. w e. ( { A , B , C } \ { B } ) ( G NeighbVtx A ) = { B , w } ) ) |
| 17 |
|
sneq |
|- ( v = C -> { v } = { C } ) |
| 18 |
17
|
difeq2d |
|- ( v = C -> ( { A , B , C } \ { v } ) = ( { A , B , C } \ { C } ) ) |
| 19 |
|
preq1 |
|- ( v = C -> { v , w } = { C , w } ) |
| 20 |
19
|
eqeq2d |
|- ( v = C -> ( ( G NeighbVtx A ) = { v , w } <-> ( G NeighbVtx A ) = { C , w } ) ) |
| 21 |
18 20
|
rexeqbidv |
|- ( v = C -> ( E. w e. ( { A , B , C } \ { v } ) ( G NeighbVtx A ) = { v , w } <-> E. w e. ( { A , B , C } \ { C } ) ( G NeighbVtx A ) = { C , w } ) ) |
| 22 |
11 16 21
|
rextpg |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( E. v e. { A , B , C } E. w e. ( { A , B , C } \ { v } ) ( G NeighbVtx A ) = { v , w } <-> ( E. w e. ( { A , B , C } \ { A } ) ( G NeighbVtx A ) = { A , w } \/ E. w e. ( { A , B , C } \ { B } ) ( G NeighbVtx A ) = { B , w } \/ E. w e. ( { A , B , C } \ { C } ) ( G NeighbVtx A ) = { C , w } ) ) ) |
| 23 |
5 22
|
syl |
|- ( ph -> ( E. v e. { A , B , C } E. w e. ( { A , B , C } \ { v } ) ( G NeighbVtx A ) = { v , w } <-> ( E. w e. ( { A , B , C } \ { A } ) ( G NeighbVtx A ) = { A , w } \/ E. w e. ( { A , B , C } \ { B } ) ( G NeighbVtx A ) = { B , w } \/ E. w e. ( { A , B , C } \ { C } ) ( G NeighbVtx A ) = { C , w } ) ) ) |
| 24 |
4 3
|
jca |
|- ( ph -> ( V = { A , B , C } /\ G e. USGraph ) ) |
| 25 |
|
simpl |
|- ( ( V = { A , B , C } /\ G e. USGraph ) -> V = { A , B , C } ) |
| 26 |
|
difeq1 |
|- ( V = { A , B , C } -> ( V \ { v } ) = ( { A , B , C } \ { v } ) ) |
| 27 |
26
|
adantr |
|- ( ( V = { A , B , C } /\ G e. USGraph ) -> ( V \ { v } ) = ( { A , B , C } \ { v } ) ) |
| 28 |
27
|
rexeqdv |
|- ( ( V = { A , B , C } /\ G e. USGraph ) -> ( E. w e. ( V \ { v } ) ( G NeighbVtx A ) = { v , w } <-> E. w e. ( { A , B , C } \ { v } ) ( G NeighbVtx A ) = { v , w } ) ) |
| 29 |
25 28
|
rexeqbidv |
|- ( ( V = { A , B , C } /\ G e. USGraph ) -> ( E. v e. V E. w e. ( V \ { v } ) ( G NeighbVtx A ) = { v , w } <-> E. v e. { A , B , C } E. w e. ( { A , B , C } \ { v } ) ( G NeighbVtx A ) = { v , w } ) ) |
| 30 |
24 29
|
syl |
|- ( ph -> ( E. v e. V E. w e. ( V \ { v } ) ( G NeighbVtx A ) = { v , w } <-> E. v e. { A , B , C } E. w e. ( { A , B , C } \ { v } ) ( G NeighbVtx A ) = { v , w } ) ) |
| 31 |
|
preq2 |
|- ( w = B -> { A , w } = { A , B } ) |
| 32 |
31
|
eqeq2d |
|- ( w = B -> ( ( G NeighbVtx A ) = { A , w } <-> ( G NeighbVtx A ) = { A , B } ) ) |
| 33 |
|
preq2 |
|- ( w = C -> { A , w } = { A , C } ) |
| 34 |
33
|
eqeq2d |
|- ( w = C -> ( ( G NeighbVtx A ) = { A , w } <-> ( G NeighbVtx A ) = { A , C } ) ) |
| 35 |
32 34
|
rexprg |
|- ( ( B e. Y /\ C e. Z ) -> ( E. w e. { B , C } ( G NeighbVtx A ) = { A , w } <-> ( ( G NeighbVtx A ) = { A , B } \/ ( G NeighbVtx A ) = { A , C } ) ) ) |
| 36 |
35
|
3adant1 |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( E. w e. { B , C } ( G NeighbVtx A ) = { A , w } <-> ( ( G NeighbVtx A ) = { A , B } \/ ( G NeighbVtx A ) = { A , C } ) ) ) |
| 37 |
|
preq2 |
|- ( w = C -> { B , w } = { B , C } ) |
| 38 |
37
|
eqeq2d |
|- ( w = C -> ( ( G NeighbVtx A ) = { B , w } <-> ( G NeighbVtx A ) = { B , C } ) ) |
| 39 |
|
preq2 |
|- ( w = A -> { B , w } = { B , A } ) |
| 40 |
39
|
eqeq2d |
|- ( w = A -> ( ( G NeighbVtx A ) = { B , w } <-> ( G NeighbVtx A ) = { B , A } ) ) |
| 41 |
38 40
|
rexprg |
|- ( ( C e. Z /\ A e. X ) -> ( E. w e. { C , A } ( G NeighbVtx A ) = { B , w } <-> ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , A } ) ) ) |
| 42 |
41
|
ancoms |
|- ( ( A e. X /\ C e. Z ) -> ( E. w e. { C , A } ( G NeighbVtx A ) = { B , w } <-> ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , A } ) ) ) |
| 43 |
42
|
3adant2 |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( E. w e. { C , A } ( G NeighbVtx A ) = { B , w } <-> ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , A } ) ) ) |
| 44 |
|
preq2 |
|- ( w = A -> { C , w } = { C , A } ) |
| 45 |
44
|
eqeq2d |
|- ( w = A -> ( ( G NeighbVtx A ) = { C , w } <-> ( G NeighbVtx A ) = { C , A } ) ) |
| 46 |
|
preq2 |
|- ( w = B -> { C , w } = { C , B } ) |
| 47 |
46
|
eqeq2d |
|- ( w = B -> ( ( G NeighbVtx A ) = { C , w } <-> ( G NeighbVtx A ) = { C , B } ) ) |
| 48 |
45 47
|
rexprg |
|- ( ( A e. X /\ B e. Y ) -> ( E. w e. { A , B } ( G NeighbVtx A ) = { C , w } <-> ( ( G NeighbVtx A ) = { C , A } \/ ( G NeighbVtx A ) = { C , B } ) ) ) |
| 49 |
48
|
3adant3 |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( E. w e. { A , B } ( G NeighbVtx A ) = { C , w } <-> ( ( G NeighbVtx A ) = { C , A } \/ ( G NeighbVtx A ) = { C , B } ) ) ) |
| 50 |
36 43 49
|
3orbi123d |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( ( E. w e. { B , C } ( G NeighbVtx A ) = { A , w } \/ E. w e. { C , A } ( G NeighbVtx A ) = { B , w } \/ E. w e. { A , B } ( G NeighbVtx A ) = { C , w } ) <-> ( ( ( G NeighbVtx A ) = { A , B } \/ ( G NeighbVtx A ) = { A , C } ) \/ ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , A } ) \/ ( ( G NeighbVtx A ) = { C , A } \/ ( G NeighbVtx A ) = { C , B } ) ) ) ) |
| 51 |
5 50
|
syl |
|- ( ph -> ( ( E. w e. { B , C } ( G NeighbVtx A ) = { A , w } \/ E. w e. { C , A } ( G NeighbVtx A ) = { B , w } \/ E. w e. { A , B } ( G NeighbVtx A ) = { C , w } ) <-> ( ( ( G NeighbVtx A ) = { A , B } \/ ( G NeighbVtx A ) = { A , C } ) \/ ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , A } ) \/ ( ( G NeighbVtx A ) = { C , A } \/ ( G NeighbVtx A ) = { C , B } ) ) ) ) |
| 52 |
|
tprot |
|- { A , B , C } = { B , C , A } |
| 53 |
52
|
a1i |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> { A , B , C } = { B , C , A } ) |
| 54 |
53
|
difeq1d |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( { A , B , C } \ { A } ) = ( { B , C , A } \ { A } ) ) |
| 55 |
|
necom |
|- ( A =/= B <-> B =/= A ) |
| 56 |
|
necom |
|- ( A =/= C <-> C =/= A ) |
| 57 |
|
diftpsn3 |
|- ( ( B =/= A /\ C =/= A ) -> ( { B , C , A } \ { A } ) = { B , C } ) |
| 58 |
55 56 57
|
syl2anb |
|- ( ( A =/= B /\ A =/= C ) -> ( { B , C , A } \ { A } ) = { B , C } ) |
| 59 |
58
|
3adant3 |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( { B , C , A } \ { A } ) = { B , C } ) |
| 60 |
54 59
|
eqtrd |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( { A , B , C } \ { A } ) = { B , C } ) |
| 61 |
60
|
rexeqdv |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( E. w e. ( { A , B , C } \ { A } ) ( G NeighbVtx A ) = { A , w } <-> E. w e. { B , C } ( G NeighbVtx A ) = { A , w } ) ) |
| 62 |
|
tprot |
|- { C , A , B } = { A , B , C } |
| 63 |
62
|
eqcomi |
|- { A , B , C } = { C , A , B } |
| 64 |
63
|
a1i |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> { A , B , C } = { C , A , B } ) |
| 65 |
64
|
difeq1d |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( { A , B , C } \ { B } ) = ( { C , A , B } \ { B } ) ) |
| 66 |
|
necom |
|- ( B =/= C <-> C =/= B ) |
| 67 |
66
|
anbi1i |
|- ( ( B =/= C /\ A =/= B ) <-> ( C =/= B /\ A =/= B ) ) |
| 68 |
67
|
biimpi |
|- ( ( B =/= C /\ A =/= B ) -> ( C =/= B /\ A =/= B ) ) |
| 69 |
68
|
ancoms |
|- ( ( A =/= B /\ B =/= C ) -> ( C =/= B /\ A =/= B ) ) |
| 70 |
|
diftpsn3 |
|- ( ( C =/= B /\ A =/= B ) -> ( { C , A , B } \ { B } ) = { C , A } ) |
| 71 |
69 70
|
syl |
|- ( ( A =/= B /\ B =/= C ) -> ( { C , A , B } \ { B } ) = { C , A } ) |
| 72 |
71
|
3adant2 |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( { C , A , B } \ { B } ) = { C , A } ) |
| 73 |
65 72
|
eqtrd |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( { A , B , C } \ { B } ) = { C , A } ) |
| 74 |
73
|
rexeqdv |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( E. w e. ( { A , B , C } \ { B } ) ( G NeighbVtx A ) = { B , w } <-> E. w e. { C , A } ( G NeighbVtx A ) = { B , w } ) ) |
| 75 |
|
diftpsn3 |
|- ( ( A =/= C /\ B =/= C ) -> ( { A , B , C } \ { C } ) = { A , B } ) |
| 76 |
75
|
3adant1 |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( { A , B , C } \ { C } ) = { A , B } ) |
| 77 |
76
|
rexeqdv |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( E. w e. ( { A , B , C } \ { C } ) ( G NeighbVtx A ) = { C , w } <-> E. w e. { A , B } ( G NeighbVtx A ) = { C , w } ) ) |
| 78 |
61 74 77
|
3orbi123d |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( ( E. w e. ( { A , B , C } \ { A } ) ( G NeighbVtx A ) = { A , w } \/ E. w e. ( { A , B , C } \ { B } ) ( G NeighbVtx A ) = { B , w } \/ E. w e. ( { A , B , C } \ { C } ) ( G NeighbVtx A ) = { C , w } ) <-> ( E. w e. { B , C } ( G NeighbVtx A ) = { A , w } \/ E. w e. { C , A } ( G NeighbVtx A ) = { B , w } \/ E. w e. { A , B } ( G NeighbVtx A ) = { C , w } ) ) ) |
| 79 |
6 78
|
syl |
|- ( ph -> ( ( E. w e. ( { A , B , C } \ { A } ) ( G NeighbVtx A ) = { A , w } \/ E. w e. ( { A , B , C } \ { B } ) ( G NeighbVtx A ) = { B , w } \/ E. w e. ( { A , B , C } \ { C } ) ( G NeighbVtx A ) = { C , w } ) <-> ( E. w e. { B , C } ( G NeighbVtx A ) = { A , w } \/ E. w e. { C , A } ( G NeighbVtx A ) = { B , w } \/ E. w e. { A , B } ( G NeighbVtx A ) = { C , w } ) ) ) |
| 80 |
|
prcom |
|- { C , B } = { B , C } |
| 81 |
80
|
eqeq2i |
|- ( ( G NeighbVtx A ) = { C , B } <-> ( G NeighbVtx A ) = { B , C } ) |
| 82 |
81
|
orbi2i |
|- ( ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { C , B } ) <-> ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , C } ) ) |
| 83 |
|
oridm |
|- ( ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , C } ) <-> ( G NeighbVtx A ) = { B , C } ) |
| 84 |
82 83
|
bitr2i |
|- ( ( G NeighbVtx A ) = { B , C } <-> ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { C , B } ) ) |
| 85 |
84
|
a1i |
|- ( ph -> ( ( G NeighbVtx A ) = { B , C } <-> ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { C , B } ) ) ) |
| 86 |
|
nbgrnself2 |
|- A e/ ( G NeighbVtx A ) |
| 87 |
|
df-nel |
|- ( A e/ ( G NeighbVtx A ) <-> -. A e. ( G NeighbVtx A ) ) |
| 88 |
|
prid2g |
|- ( A e. X -> A e. { B , A } ) |
| 89 |
88
|
3ad2ant1 |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> A e. { B , A } ) |
| 90 |
|
eleq2 |
|- ( ( G NeighbVtx A ) = { B , A } -> ( A e. ( G NeighbVtx A ) <-> A e. { B , A } ) ) |
| 91 |
89 90
|
syl5ibrcom |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( ( G NeighbVtx A ) = { B , A } -> A e. ( G NeighbVtx A ) ) ) |
| 92 |
91
|
con3rr3 |
|- ( -. A e. ( G NeighbVtx A ) -> ( ( A e. X /\ B e. Y /\ C e. Z ) -> -. ( G NeighbVtx A ) = { B , A } ) ) |
| 93 |
87 92
|
sylbi |
|- ( A e/ ( G NeighbVtx A ) -> ( ( A e. X /\ B e. Y /\ C e. Z ) -> -. ( G NeighbVtx A ) = { B , A } ) ) |
| 94 |
86 5 93
|
mpsyl |
|- ( ph -> -. ( G NeighbVtx A ) = { B , A } ) |
| 95 |
|
biorf |
|- ( -. ( G NeighbVtx A ) = { B , A } -> ( ( G NeighbVtx A ) = { B , C } <-> ( ( G NeighbVtx A ) = { B , A } \/ ( G NeighbVtx A ) = { B , C } ) ) ) |
| 96 |
|
orcom |
|- ( ( ( G NeighbVtx A ) = { B , A } \/ ( G NeighbVtx A ) = { B , C } ) <-> ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , A } ) ) |
| 97 |
95 96
|
bitrdi |
|- ( -. ( G NeighbVtx A ) = { B , A } -> ( ( G NeighbVtx A ) = { B , C } <-> ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , A } ) ) ) |
| 98 |
94 97
|
syl |
|- ( ph -> ( ( G NeighbVtx A ) = { B , C } <-> ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , A } ) ) ) |
| 99 |
|
prid2g |
|- ( A e. X -> A e. { C , A } ) |
| 100 |
99
|
3ad2ant1 |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> A e. { C , A } ) |
| 101 |
|
eleq2 |
|- ( ( G NeighbVtx A ) = { C , A } -> ( A e. ( G NeighbVtx A ) <-> A e. { C , A } ) ) |
| 102 |
100 101
|
syl5ibrcom |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( ( G NeighbVtx A ) = { C , A } -> A e. ( G NeighbVtx A ) ) ) |
| 103 |
102
|
con3rr3 |
|- ( -. A e. ( G NeighbVtx A ) -> ( ( A e. X /\ B e. Y /\ C e. Z ) -> -. ( G NeighbVtx A ) = { C , A } ) ) |
| 104 |
87 103
|
sylbi |
|- ( A e/ ( G NeighbVtx A ) -> ( ( A e. X /\ B e. Y /\ C e. Z ) -> -. ( G NeighbVtx A ) = { C , A } ) ) |
| 105 |
86 5 104
|
mpsyl |
|- ( ph -> -. ( G NeighbVtx A ) = { C , A } ) |
| 106 |
|
biorf |
|- ( -. ( G NeighbVtx A ) = { C , A } -> ( ( G NeighbVtx A ) = { C , B } <-> ( ( G NeighbVtx A ) = { C , A } \/ ( G NeighbVtx A ) = { C , B } ) ) ) |
| 107 |
105 106
|
syl |
|- ( ph -> ( ( G NeighbVtx A ) = { C , B } <-> ( ( G NeighbVtx A ) = { C , A } \/ ( G NeighbVtx A ) = { C , B } ) ) ) |
| 108 |
98 107
|
orbi12d |
|- ( ph -> ( ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { C , B } ) <-> ( ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , A } ) \/ ( ( G NeighbVtx A ) = { C , A } \/ ( G NeighbVtx A ) = { C , B } ) ) ) ) |
| 109 |
|
prid1g |
|- ( A e. X -> A e. { A , B } ) |
| 110 |
109
|
3ad2ant1 |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> A e. { A , B } ) |
| 111 |
|
eleq2 |
|- ( ( G NeighbVtx A ) = { A , B } -> ( A e. ( G NeighbVtx A ) <-> A e. { A , B } ) ) |
| 112 |
110 111
|
syl5ibrcom |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( ( G NeighbVtx A ) = { A , B } -> A e. ( G NeighbVtx A ) ) ) |
| 113 |
112
|
con3dimp |
|- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ -. A e. ( G NeighbVtx A ) ) -> -. ( G NeighbVtx A ) = { A , B } ) |
| 114 |
|
prid1g |
|- ( A e. X -> A e. { A , C } ) |
| 115 |
114
|
3ad2ant1 |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> A e. { A , C } ) |
| 116 |
|
eleq2 |
|- ( ( G NeighbVtx A ) = { A , C } -> ( A e. ( G NeighbVtx A ) <-> A e. { A , C } ) ) |
| 117 |
115 116
|
syl5ibrcom |
|- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( ( G NeighbVtx A ) = { A , C } -> A e. ( G NeighbVtx A ) ) ) |
| 118 |
117
|
con3dimp |
|- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ -. A e. ( G NeighbVtx A ) ) -> -. ( G NeighbVtx A ) = { A , C } ) |
| 119 |
113 118
|
jca |
|- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ -. A e. ( G NeighbVtx A ) ) -> ( -. ( G NeighbVtx A ) = { A , B } /\ -. ( G NeighbVtx A ) = { A , C } ) ) |
| 120 |
119
|
expcom |
|- ( -. A e. ( G NeighbVtx A ) -> ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( -. ( G NeighbVtx A ) = { A , B } /\ -. ( G NeighbVtx A ) = { A , C } ) ) ) |
| 121 |
87 120
|
sylbi |
|- ( A e/ ( G NeighbVtx A ) -> ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( -. ( G NeighbVtx A ) = { A , B } /\ -. ( G NeighbVtx A ) = { A , C } ) ) ) |
| 122 |
86 5 121
|
mpsyl |
|- ( ph -> ( -. ( G NeighbVtx A ) = { A , B } /\ -. ( G NeighbVtx A ) = { A , C } ) ) |
| 123 |
|
ioran |
|- ( -. ( ( G NeighbVtx A ) = { A , B } \/ ( G NeighbVtx A ) = { A , C } ) <-> ( -. ( G NeighbVtx A ) = { A , B } /\ -. ( G NeighbVtx A ) = { A , C } ) ) |
| 124 |
122 123
|
sylibr |
|- ( ph -> -. ( ( G NeighbVtx A ) = { A , B } \/ ( G NeighbVtx A ) = { A , C } ) ) |
| 125 |
124
|
3bior1fd |
|- ( ph -> ( ( ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , A } ) \/ ( ( G NeighbVtx A ) = { C , A } \/ ( G NeighbVtx A ) = { C , B } ) ) <-> ( ( ( G NeighbVtx A ) = { A , B } \/ ( G NeighbVtx A ) = { A , C } ) \/ ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , A } ) \/ ( ( G NeighbVtx A ) = { C , A } \/ ( G NeighbVtx A ) = { C , B } ) ) ) ) |
| 126 |
85 108 125
|
3bitrd |
|- ( ph -> ( ( G NeighbVtx A ) = { B , C } <-> ( ( ( G NeighbVtx A ) = { A , B } \/ ( G NeighbVtx A ) = { A , C } ) \/ ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , A } ) \/ ( ( G NeighbVtx A ) = { C , A } \/ ( G NeighbVtx A ) = { C , B } ) ) ) ) |
| 127 |
51 79 126
|
3bitr4rd |
|- ( ph -> ( ( G NeighbVtx A ) = { B , C } <-> ( E. w e. ( { A , B , C } \ { A } ) ( G NeighbVtx A ) = { A , w } \/ E. w e. ( { A , B , C } \ { B } ) ( G NeighbVtx A ) = { B , w } \/ E. w e. ( { A , B , C } \ { C } ) ( G NeighbVtx A ) = { C , w } ) ) ) |
| 128 |
23 30 127
|
3bitr4rd |
|- ( ph -> ( ( G NeighbVtx A ) = { B , C } <-> E. v e. V E. w e. ( V \ { v } ) ( G NeighbVtx A ) = { v , w } ) ) |