| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nb3grpr.v |
|
| 2 |
|
nb3grpr.e |
|
| 3 |
|
nb3grpr.g |
|
| 4 |
|
nb3grpr.t |
|
| 5 |
|
nb3grpr.s |
|
| 6 |
|
nb3grpr.n |
|
| 7 |
|
id |
|
| 8 |
|
prcom |
|
| 9 |
8
|
eleq1i |
|
| 10 |
|
prcom |
|
| 11 |
10
|
eleq1i |
|
| 12 |
|
prcom |
|
| 13 |
12
|
eleq1i |
|
| 14 |
9 11 13
|
3anbi123i |
|
| 15 |
|
3anrot |
|
| 16 |
14 15
|
bitr4i |
|
| 17 |
16
|
a1i |
|
| 18 |
7 17
|
biadanii |
|
| 19 |
|
an6 |
|
| 20 |
18 19
|
bitri |
|
| 21 |
20
|
a1i |
|
| 22 |
1 2 3 4 5
|
nb3grprlem1 |
|
| 23 |
|
tprot |
|
| 24 |
4 23
|
eqtrdi |
|
| 25 |
|
3anrot |
|
| 26 |
5 25
|
sylib |
|
| 27 |
1 2 3 24 26
|
nb3grprlem1 |
|
| 28 |
|
tprot |
|
| 29 |
4 28
|
eqtr4di |
|
| 30 |
|
3anrot |
|
| 31 |
5 30
|
sylibr |
|
| 32 |
1 2 3 29 31
|
nb3grprlem1 |
|
| 33 |
22 27 32
|
3anbi123d |
|
| 34 |
1 2 3 4 5 6
|
nb3grprlem2 |
|
| 35 |
|
necom |
|
| 36 |
|
necom |
|
| 37 |
|
biid |
|
| 38 |
35 36 37
|
3anbi123i |
|
| 39 |
|
3anrot |
|
| 40 |
38 39
|
bitr4i |
|
| 41 |
6 40
|
sylib |
|
| 42 |
1 2 3 24 26 41
|
nb3grprlem2 |
|
| 43 |
|
3anrot |
|
| 44 |
|
necom |
|
| 45 |
|
biid |
|
| 46 |
36 44 45
|
3anbi123i |
|
| 47 |
43 46
|
bitri |
|
| 48 |
6 47
|
sylib |
|
| 49 |
1 2 3 29 31 48
|
nb3grprlem2 |
|
| 50 |
34 42 49
|
3anbi123d |
|
| 51 |
21 33 50
|
3bitr2d |
|
| 52 |
|
oveq2 |
|
| 53 |
52
|
eqeq1d |
|
| 54 |
53
|
2rexbidv |
|
| 55 |
|
oveq2 |
|
| 56 |
55
|
eqeq1d |
|
| 57 |
56
|
2rexbidv |
|
| 58 |
|
oveq2 |
|
| 59 |
58
|
eqeq1d |
|
| 60 |
59
|
2rexbidv |
|
| 61 |
54 57 60
|
raltpg |
|
| 62 |
5 61
|
syl |
|
| 63 |
|
raleq |
|
| 64 |
63
|
bicomd |
|
| 65 |
4 64
|
syl |
|
| 66 |
51 62 65
|
3bitr2d |
|