Step |
Hyp |
Ref |
Expression |
1 |
|
hashnbusgrnn0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
3 |
|
difexg |
⊢ ( 𝑉 ∈ V → ( 𝑉 ∖ { 𝑀 , 𝑈 } ) ∈ V ) |
4 |
2 3
|
mp1i |
⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) ) → ( 𝑉 ∖ { 𝑀 , 𝑈 } ) ∈ V ) |
5 |
|
simpr3 |
⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) ) → 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) |
6 |
1
|
nbgrssvwo2 |
⊢ ( 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) → ( 𝐺 NeighbVtx 𝑈 ) ⊆ ( 𝑉 ∖ { 𝑀 , 𝑈 } ) ) |
7 |
5 6
|
syl |
⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) ) → ( 𝐺 NeighbVtx 𝑈 ) ⊆ ( 𝑉 ∖ { 𝑀 , 𝑈 } ) ) |
8 |
|
hashss |
⊢ ( ( ( 𝑉 ∖ { 𝑀 , 𝑈 } ) ∈ V ∧ ( 𝐺 NeighbVtx 𝑈 ) ⊆ ( 𝑉 ∖ { 𝑀 , 𝑈 } ) ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ♯ ‘ ( 𝑉 ∖ { 𝑀 , 𝑈 } ) ) ) |
9 |
4 7 8
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ♯ ‘ ( 𝑉 ∖ { 𝑀 , 𝑈 } ) ) ) |
10 |
1
|
fusgrvtxfi |
⊢ ( 𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) ) → 𝑉 ∈ Fin ) |
12 |
|
simpr1 |
⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) ) → 𝑀 ∈ 𝑉 ) |
13 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) ) → 𝑈 ∈ 𝑉 ) |
14 |
|
simpr2 |
⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) ) → 𝑀 ≠ 𝑈 ) |
15 |
|
hashdifpr |
⊢ ( ( 𝑉 ∈ Fin ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) ) → ( ♯ ‘ ( 𝑉 ∖ { 𝑀 , 𝑈 } ) ) = ( ( ♯ ‘ 𝑉 ) − 2 ) ) |
16 |
11 12 13 14 15
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) ) → ( ♯ ‘ ( 𝑉 ∖ { 𝑀 , 𝑈 } ) ) = ( ( ♯ ‘ 𝑉 ) − 2 ) ) |
17 |
9 16
|
breqtrd |
⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) ) |