Step |
Hyp |
Ref |
Expression |
1 |
|
hashnbusgrnn0.v |
|- V = ( Vtx ` G ) |
2 |
1
|
fvexi |
|- V e. _V |
3 |
|
difexg |
|- ( V e. _V -> ( V \ { M , U } ) e. _V ) |
4 |
2 3
|
mp1i |
|- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( M e. V /\ M =/= U /\ M e/ ( G NeighbVtx U ) ) ) -> ( V \ { M , U } ) e. _V ) |
5 |
|
simpr3 |
|- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( M e. V /\ M =/= U /\ M e/ ( G NeighbVtx U ) ) ) -> M e/ ( G NeighbVtx U ) ) |
6 |
1
|
nbgrssvwo2 |
|- ( M e/ ( G NeighbVtx U ) -> ( G NeighbVtx U ) C_ ( V \ { M , U } ) ) |
7 |
5 6
|
syl |
|- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( M e. V /\ M =/= U /\ M e/ ( G NeighbVtx U ) ) ) -> ( G NeighbVtx U ) C_ ( V \ { M , U } ) ) |
8 |
|
hashss |
|- ( ( ( V \ { M , U } ) e. _V /\ ( G NeighbVtx U ) C_ ( V \ { M , U } ) ) -> ( # ` ( G NeighbVtx U ) ) <_ ( # ` ( V \ { M , U } ) ) ) |
9 |
4 7 8
|
syl2anc |
|- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( M e. V /\ M =/= U /\ M e/ ( G NeighbVtx U ) ) ) -> ( # ` ( G NeighbVtx U ) ) <_ ( # ` ( V \ { M , U } ) ) ) |
10 |
1
|
fusgrvtxfi |
|- ( G e. FinUSGraph -> V e. Fin ) |
11 |
10
|
ad2antrr |
|- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( M e. V /\ M =/= U /\ M e/ ( G NeighbVtx U ) ) ) -> V e. Fin ) |
12 |
|
simpr1 |
|- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( M e. V /\ M =/= U /\ M e/ ( G NeighbVtx U ) ) ) -> M e. V ) |
13 |
|
simplr |
|- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( M e. V /\ M =/= U /\ M e/ ( G NeighbVtx U ) ) ) -> U e. V ) |
14 |
|
simpr2 |
|- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( M e. V /\ M =/= U /\ M e/ ( G NeighbVtx U ) ) ) -> M =/= U ) |
15 |
|
hashdifpr |
|- ( ( V e. Fin /\ ( M e. V /\ U e. V /\ M =/= U ) ) -> ( # ` ( V \ { M , U } ) ) = ( ( # ` V ) - 2 ) ) |
16 |
11 12 13 14 15
|
syl13anc |
|- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( M e. V /\ M =/= U /\ M e/ ( G NeighbVtx U ) ) ) -> ( # ` ( V \ { M , U } ) ) = ( ( # ` V ) - 2 ) ) |
17 |
9 16
|
breqtrd |
|- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( M e. V /\ M =/= U /\ M e/ ( G NeighbVtx U ) ) ) -> ( # ` ( G NeighbVtx U ) ) <_ ( ( # ` V ) - 2 ) ) |