| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neiptop.o |
⊢ 𝐽 = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } |
| 2 |
|
neiptop.0 |
⊢ ( 𝜑 → 𝑁 : 𝑋 ⟶ 𝒫 𝒫 𝑋 ) |
| 3 |
|
neiptop.1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 4 |
|
neiptop.2 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → ( fi ‘ ( 𝑁 ‘ 𝑝 ) ) ⊆ ( 𝑁 ‘ 𝑝 ) ) |
| 5 |
|
neiptop.3 |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑝 ∈ 𝑎 ) |
| 6 |
|
neiptop.4 |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑞 ∈ 𝑏 𝑎 ∈ ( 𝑁 ‘ 𝑞 ) ) |
| 7 |
|
neiptop.5 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → 𝑋 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 8 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 𝑋 → 𝑎 ⊆ 𝑋 ) |
| 9 |
8
|
ad2antlr |
⊢ ( ( ( 𝑝 ∈ ∪ 𝐽 ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) → 𝑎 ⊆ 𝑋 ) |
| 10 |
|
simpr |
⊢ ( ( ( 𝑝 ∈ ∪ 𝐽 ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) → 𝑝 ∈ 𝑎 ) |
| 11 |
9 10
|
sseldd |
⊢ ( ( ( 𝑝 ∈ ∪ 𝐽 ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) → 𝑝 ∈ 𝑋 ) |
| 12 |
1
|
unieqi |
⊢ ∪ 𝐽 = ∪ { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } |
| 13 |
12
|
eleq2i |
⊢ ( 𝑝 ∈ ∪ 𝐽 ↔ 𝑝 ∈ ∪ { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } ) |
| 14 |
|
elunirab |
⊢ ( 𝑝 ∈ ∪ { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } ↔ ∃ 𝑎 ∈ 𝒫 𝑋 ( 𝑝 ∈ 𝑎 ∧ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| 15 |
13 14
|
bitri |
⊢ ( 𝑝 ∈ ∪ 𝐽 ↔ ∃ 𝑎 ∈ 𝒫 𝑋 ( 𝑝 ∈ 𝑎 ∧ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| 16 |
|
simpl |
⊢ ( ( 𝑝 ∈ 𝑎 ∧ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑝 ∈ 𝑎 ) |
| 17 |
16
|
reximi |
⊢ ( ∃ 𝑎 ∈ 𝒫 𝑋 ( 𝑝 ∈ 𝑎 ∧ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑎 ∈ 𝒫 𝑋 𝑝 ∈ 𝑎 ) |
| 18 |
15 17
|
sylbi |
⊢ ( 𝑝 ∈ ∪ 𝐽 → ∃ 𝑎 ∈ 𝒫 𝑋 𝑝 ∈ 𝑎 ) |
| 19 |
11 18
|
r19.29a |
⊢ ( 𝑝 ∈ ∪ 𝐽 → 𝑝 ∈ 𝑋 ) |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → ( 𝑝 ∈ ∪ 𝐽 → 𝑝 ∈ 𝑋 ) ) |
| 21 |
20
|
ssrdv |
⊢ ( 𝜑 → ∪ 𝐽 ⊆ 𝑋 ) |
| 22 |
|
ssidd |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑋 ) |
| 23 |
7
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑋 𝑋 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 24 |
1
|
neipeltop |
⊢ ( 𝑋 ∈ 𝐽 ↔ ( 𝑋 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝑋 𝑋 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| 25 |
22 23 24
|
sylanbrc |
⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
| 26 |
|
unissel |
⊢ ( ( ∪ 𝐽 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽 ) → ∪ 𝐽 = 𝑋 ) |
| 27 |
21 25 26
|
syl2anc |
⊢ ( 𝜑 → ∪ 𝐽 = 𝑋 ) |
| 28 |
27
|
eqcomd |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |