| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neiptop.o |
⊢ 𝐽 = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } |
| 2 |
|
neiptop.0 |
⊢ ( 𝜑 → 𝑁 : 𝑋 ⟶ 𝒫 𝒫 𝑋 ) |
| 3 |
|
neiptop.1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 4 |
|
neiptop.2 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → ( fi ‘ ( 𝑁 ‘ 𝑝 ) ) ⊆ ( 𝑁 ‘ 𝑝 ) ) |
| 5 |
|
neiptop.3 |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑝 ∈ 𝑎 ) |
| 6 |
|
neiptop.4 |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑞 ∈ 𝑏 𝑎 ∈ ( 𝑁 ‘ 𝑞 ) ) |
| 7 |
|
neiptop.5 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → 𝑋 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 8 |
1 2 3 4 5 6 7
|
neiptoptop |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 9 |
|
toptopon2 |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 10 |
8 9
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 11 |
1 2 3 4 5 6 7
|
neiptopuni |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 12 |
11
|
fveq2d |
⊢ ( 𝜑 → ( TopOn ‘ 𝑋 ) = ( TopOn ‘ ∪ 𝐽 ) ) |
| 13 |
10 12
|
eleqtrrd |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 14 |
1 2 3 4 5 6 7
|
neiptopnei |
⊢ ( 𝜑 → 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ) ) |
| 15 |
|
nfv |
⊢ Ⅎ 𝑝 ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) |
| 16 |
|
nfmpt1 |
⊢ Ⅎ 𝑝 ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) |
| 17 |
16
|
nfeq2 |
⊢ Ⅎ 𝑝 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) |
| 18 |
15 17
|
nfan |
⊢ Ⅎ 𝑝 ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) |
| 19 |
|
nfv |
⊢ Ⅎ 𝑝 𝑏 ⊆ 𝑋 |
| 20 |
18 19
|
nfan |
⊢ Ⅎ 𝑝 ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ 𝑏 ⊆ 𝑋 ) |
| 21 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑝 ∈ 𝑏 ) → 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) |
| 22 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ 𝑏 ⊆ 𝑋 ) → 𝑏 ⊆ 𝑋 ) |
| 23 |
22
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑝 ∈ 𝑏 ) → 𝑝 ∈ 𝑋 ) |
| 24 |
|
id |
⊢ ( 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) → 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) |
| 25 |
|
fvexd |
⊢ ( ( 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ∧ 𝑝 ∈ 𝑋 ) → ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ∈ V ) |
| 26 |
24 25
|
fvmpt2d |
⊢ ( ( 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑝 ) = ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) |
| 27 |
21 23 26
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑝 ∈ 𝑏 ) → ( 𝑁 ‘ 𝑝 ) = ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) |
| 28 |
27
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑝 ∈ 𝑏 ) → ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) = ( 𝑁 ‘ 𝑝 ) ) |
| 29 |
28
|
eleq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑝 ∈ 𝑏 ) → ( 𝑏 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ↔ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| 30 |
20 29
|
ralbida |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ 𝑏 ⊆ 𝑋 ) → ( ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ↔ ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| 31 |
30
|
pm5.32da |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) → ( ( 𝑏 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ↔ ( 𝑏 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) ) ) |
| 32 |
|
toponss |
⊢ ( ( 𝑗 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑏 ∈ 𝑗 ) → 𝑏 ⊆ 𝑋 ) |
| 33 |
32
|
ad4ant24 |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ 𝑏 ∈ 𝑗 ) → 𝑏 ⊆ 𝑋 ) |
| 34 |
|
topontop |
⊢ ( 𝑗 ∈ ( TopOn ‘ 𝑋 ) → 𝑗 ∈ Top ) |
| 35 |
34
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) → 𝑗 ∈ Top ) |
| 36 |
|
opnnei |
⊢ ( 𝑗 ∈ Top → ( 𝑏 ∈ 𝑗 ↔ ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) |
| 37 |
35 36
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) → ( 𝑏 ∈ 𝑗 ↔ ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) |
| 38 |
37
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ 𝑏 ∈ 𝑗 ) → ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) |
| 39 |
33 38
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ 𝑏 ∈ 𝑗 ) → ( 𝑏 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) |
| 40 |
37
|
biimpar |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) → 𝑏 ∈ 𝑗 ) |
| 41 |
40
|
adantrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ∧ ( 𝑏 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) → 𝑏 ∈ 𝑗 ) |
| 42 |
39 41
|
impbida |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) → ( 𝑏 ∈ 𝑗 ↔ ( 𝑏 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ) |
| 43 |
1
|
neipeltop |
⊢ ( 𝑏 ∈ 𝐽 ↔ ( 𝑏 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| 44 |
43
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) → ( 𝑏 ∈ 𝐽 ↔ ( 𝑏 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝑏 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) ) ) |
| 45 |
31 42 44
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) → ( 𝑏 ∈ 𝑗 ↔ 𝑏 ∈ 𝐽 ) ) |
| 46 |
45
|
eqrdv |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) → 𝑗 = 𝐽 ) |
| 47 |
46
|
ex |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) → 𝑗 = 𝐽 ) ) |
| 48 |
47
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ( 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) → 𝑗 = 𝐽 ) ) |
| 49 |
|
simpl |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑝 ∈ 𝑋 ) → 𝑗 = 𝐽 ) |
| 50 |
49
|
fveq2d |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑝 ∈ 𝑋 ) → ( nei ‘ 𝑗 ) = ( nei ‘ 𝐽 ) ) |
| 51 |
50
|
fveq1d |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑝 ∈ 𝑋 ) → ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) = ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ) |
| 52 |
51
|
mpteq2dva |
⊢ ( 𝑗 = 𝐽 → ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ) ) |
| 53 |
52
|
eqeq2d |
⊢ ( 𝑗 = 𝐽 → ( 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ↔ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ) ) ) |
| 54 |
53
|
eqreu |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ) ∧ ∀ 𝑗 ∈ ( TopOn ‘ 𝑋 ) ( 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) → 𝑗 = 𝐽 ) ) → ∃! 𝑗 ∈ ( TopOn ‘ 𝑋 ) 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) |
| 55 |
13 14 48 54
|
syl3anc |
⊢ ( 𝜑 → ∃! 𝑗 ∈ ( TopOn ‘ 𝑋 ) 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) |