Step |
Hyp |
Ref |
Expression |
1 |
|
neifval.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
1
|
neifval |
⊢ ( 𝐽 ∈ Top → ( nei ‘ 𝐽 ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) ) |
3 |
2
|
fveq1d |
⊢ ( 𝐽 ∈ Top → ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) = ( ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) ‘ 𝑆 ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) = ( ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) ‘ 𝑆 ) ) |
5 |
|
eqid |
⊢ ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) |
6 |
|
cleq1lem |
⊢ ( 𝑥 = 𝑆 → ( ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) ↔ ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) ) ) |
7 |
6
|
rexbidv |
⊢ ( 𝑥 = 𝑆 → ( ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) ↔ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) ) ) |
8 |
7
|
rabbidv |
⊢ ( 𝑥 = 𝑆 → { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } = { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) |
9 |
1
|
topopn |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
10 |
|
elpw2g |
⊢ ( 𝑋 ∈ 𝐽 → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
11 |
9 10
|
syl |
⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
12 |
11
|
biimpar |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ∈ 𝒫 𝑋 ) |
13 |
|
pwexg |
⊢ ( 𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V ) |
14 |
|
rabexg |
⊢ ( 𝒫 𝑋 ∈ V → { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ∈ V ) |
15 |
9 13 14
|
3syl |
⊢ ( 𝐽 ∈ Top → { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ∈ V ) |
16 |
15
|
adantr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ∈ V ) |
17 |
5 8 12 16
|
fvmptd3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑥 ∈ 𝒫 𝑋 ↦ { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) ‘ 𝑆 ) = { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) |
18 |
4 17
|
eqtrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) = { 𝑣 ∈ 𝒫 𝑋 ∣ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣 ) } ) |