Metamath Proof Explorer


Theorem neival

Description: Value of the set of neighborhoods of a subset of the base set of a topology. (Contributed by NM, 11-Feb-2007) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis neifval.1 X = J
Assertion neival J Top S X nei J S = v 𝒫 X | g J S g g v

Proof

Step Hyp Ref Expression
1 neifval.1 X = J
2 1 neifval J Top nei J = x 𝒫 X v 𝒫 X | g J x g g v
3 2 fveq1d J Top nei J S = x 𝒫 X v 𝒫 X | g J x g g v S
4 3 adantr J Top S X nei J S = x 𝒫 X v 𝒫 X | g J x g g v S
5 eqid x 𝒫 X v 𝒫 X | g J x g g v = x 𝒫 X v 𝒫 X | g J x g g v
6 cleq1lem x = S x g g v S g g v
7 6 rexbidv x = S g J x g g v g J S g g v
8 7 rabbidv x = S v 𝒫 X | g J x g g v = v 𝒫 X | g J S g g v
9 1 topopn J Top X J
10 elpw2g X J S 𝒫 X S X
11 9 10 syl J Top S 𝒫 X S X
12 11 biimpar J Top S X S 𝒫 X
13 pwexg X J 𝒫 X V
14 rabexg 𝒫 X V v 𝒫 X | g J S g g v V
15 9 13 14 3syl J Top v 𝒫 X | g J S g g v V
16 15 adantr J Top S X v 𝒫 X | g J S g g v V
17 5 8 12 16 fvmptd3 J Top S X x 𝒫 X v 𝒫 X | g J x g g v S = v 𝒫 X | g J S g g v
18 4 17 eqtrd J Top S X nei J S = v 𝒫 X | g J S g g v