| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nic-dfim | ⊢ ( ( ( ¬  𝜑  ⊼  ( 𝜑  ⊼  𝜑 ) )  ⊼  ( ¬  𝜑  →  𝜑 ) )  ⊼  ( ( ( ¬  𝜑  ⊼  ( 𝜑  ⊼  𝜑 ) )  ⊼  ( ¬  𝜑  ⊼  ( 𝜑  ⊼  𝜑 ) ) )  ⊼  ( ( ¬  𝜑  →  𝜑 )  ⊼  ( ¬  𝜑  →  𝜑 ) ) ) ) | 
						
							| 2 | 1 | nic-bi2 | ⊢ ( ( ¬  𝜑  →  𝜑 )  ⊼  ( ( ¬  𝜑  ⊼  ( 𝜑  ⊼  𝜑 ) )  ⊼  ( ¬  𝜑  ⊼  ( 𝜑  ⊼  𝜑 ) ) ) ) | 
						
							| 3 |  | nic-dfneg | ⊢ ( ( ( 𝜑  ⊼  𝜑 )  ⊼  ¬  𝜑 )  ⊼  ( ( ( 𝜑  ⊼  𝜑 )  ⊼  ( 𝜑  ⊼  𝜑 ) )  ⊼  ( ¬  𝜑  ⊼  ¬  𝜑 ) ) ) | 
						
							| 4 |  | nic-id | ⊢ ( ( 𝜑  ⊼  𝜑 )  ⊼  ( ( 𝜑  ⊼  𝜑 )  ⊼  ( 𝜑  ⊼  𝜑 ) ) ) | 
						
							| 5 | 3 4 | nic-iimp1 | ⊢ ( ( 𝜑  ⊼  𝜑 )  ⊼  ( ( 𝜑  ⊼  𝜑 )  ⊼  ¬  𝜑 ) ) | 
						
							| 6 | 5 | nic-isw2 | ⊢ ( ( 𝜑  ⊼  𝜑 )  ⊼  ( ¬  𝜑  ⊼  ( 𝜑  ⊼  𝜑 ) ) ) | 
						
							| 7 | 2 6 | nic-iimp1 | ⊢ ( ( 𝜑  ⊼  𝜑 )  ⊼  ( ¬  𝜑  →  𝜑 ) ) | 
						
							| 8 | 7 | nic-isw1 | ⊢ ( ( ¬  𝜑  →  𝜑 )  ⊼  ( 𝜑  ⊼  𝜑 ) ) | 
						
							| 9 |  | nic-dfim | ⊢ ( ( ( ( ¬  𝜑  →  𝜑 )  ⊼  ( 𝜑  ⊼  𝜑 ) )  ⊼  ( ( ¬  𝜑  →  𝜑 )  →  𝜑 ) )  ⊼  ( ( ( ( ¬  𝜑  →  𝜑 )  ⊼  ( 𝜑  ⊼  𝜑 ) )  ⊼  ( ( ¬  𝜑  →  𝜑 )  ⊼  ( 𝜑  ⊼  𝜑 ) ) )  ⊼  ( ( ( ¬  𝜑  →  𝜑 )  →  𝜑 )  ⊼  ( ( ¬  𝜑  →  𝜑 )  →  𝜑 ) ) ) ) | 
						
							| 10 | 9 | nic-bi1 | ⊢ ( ( ( ¬  𝜑  →  𝜑 )  ⊼  ( 𝜑  ⊼  𝜑 ) )  ⊼  ( ( ( ¬  𝜑  →  𝜑 )  →  𝜑 )  ⊼  ( ( ¬  𝜑  →  𝜑 )  →  𝜑 ) ) ) | 
						
							| 11 | 8 10 | nic-mp | ⊢ ( ( ¬  𝜑  →  𝜑 )  →  𝜑 ) |