Metamath Proof Explorer


Theorem nic-luk2

Description: Proof of luk-2 from nic-ax and nic-mp . (Contributed by Jeff Hoffman, 18-Nov-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nic-luk2 ( ( ¬ 𝜑𝜑 ) → 𝜑 )

Proof

Step Hyp Ref Expression
1 nic-dfim ( ( ( ¬ 𝜑 ⊼ ( 𝜑𝜑 ) ) ⊼ ( ¬ 𝜑𝜑 ) ) ⊼ ( ( ( ¬ 𝜑 ⊼ ( 𝜑𝜑 ) ) ⊼ ( ¬ 𝜑 ⊼ ( 𝜑𝜑 ) ) ) ⊼ ( ( ¬ 𝜑𝜑 ) ⊼ ( ¬ 𝜑𝜑 ) ) ) )
2 1 nic-bi2 ( ( ¬ 𝜑𝜑 ) ⊼ ( ( ¬ 𝜑 ⊼ ( 𝜑𝜑 ) ) ⊼ ( ¬ 𝜑 ⊼ ( 𝜑𝜑 ) ) ) )
3 nic-dfneg ( ( ( 𝜑𝜑 ) ⊼ ¬ 𝜑 ) ⊼ ( ( ( 𝜑𝜑 ) ⊼ ( 𝜑𝜑 ) ) ⊼ ( ¬ 𝜑 ⊼ ¬ 𝜑 ) ) )
4 nic-id ( ( 𝜑𝜑 ) ⊼ ( ( 𝜑𝜑 ) ⊼ ( 𝜑𝜑 ) ) )
5 3 4 nic-iimp1 ( ( 𝜑𝜑 ) ⊼ ( ( 𝜑𝜑 ) ⊼ ¬ 𝜑 ) )
6 5 nic-isw2 ( ( 𝜑𝜑 ) ⊼ ( ¬ 𝜑 ⊼ ( 𝜑𝜑 ) ) )
7 2 6 nic-iimp1 ( ( 𝜑𝜑 ) ⊼ ( ¬ 𝜑𝜑 ) )
8 7 nic-isw1 ( ( ¬ 𝜑𝜑 ) ⊼ ( 𝜑𝜑 ) )
9 nic-dfim ( ( ( ( ¬ 𝜑𝜑 ) ⊼ ( 𝜑𝜑 ) ) ⊼ ( ( ¬ 𝜑𝜑 ) → 𝜑 ) ) ⊼ ( ( ( ( ¬ 𝜑𝜑 ) ⊼ ( 𝜑𝜑 ) ) ⊼ ( ( ¬ 𝜑𝜑 ) ⊼ ( 𝜑𝜑 ) ) ) ⊼ ( ( ( ¬ 𝜑𝜑 ) → 𝜑 ) ⊼ ( ( ¬ 𝜑𝜑 ) → 𝜑 ) ) ) )
10 9 nic-bi1 ( ( ( ¬ 𝜑𝜑 ) ⊼ ( 𝜑𝜑 ) ) ⊼ ( ( ( ¬ 𝜑𝜑 ) → 𝜑 ) ⊼ ( ( ¬ 𝜑𝜑 ) → 𝜑 ) ) )
11 8 10 nic-mp ( ( ¬ 𝜑𝜑 ) → 𝜑 )