Step |
Hyp |
Ref |
Expression |
1 |
|
nic-dfim |
⊢ ( ( ( ¬ 𝜑 ⊼ ( 𝜑 ⊼ 𝜑 ) ) ⊼ ( ¬ 𝜑 → 𝜑 ) ) ⊼ ( ( ( ¬ 𝜑 ⊼ ( 𝜑 ⊼ 𝜑 ) ) ⊼ ( ¬ 𝜑 ⊼ ( 𝜑 ⊼ 𝜑 ) ) ) ⊼ ( ( ¬ 𝜑 → 𝜑 ) ⊼ ( ¬ 𝜑 → 𝜑 ) ) ) ) |
2 |
1
|
nic-bi2 |
⊢ ( ( ¬ 𝜑 → 𝜑 ) ⊼ ( ( ¬ 𝜑 ⊼ ( 𝜑 ⊼ 𝜑 ) ) ⊼ ( ¬ 𝜑 ⊼ ( 𝜑 ⊼ 𝜑 ) ) ) ) |
3 |
|
nic-dfneg |
⊢ ( ( ( 𝜑 ⊼ 𝜑 ) ⊼ ¬ 𝜑 ) ⊼ ( ( ( 𝜑 ⊼ 𝜑 ) ⊼ ( 𝜑 ⊼ 𝜑 ) ) ⊼ ( ¬ 𝜑 ⊼ ¬ 𝜑 ) ) ) |
4 |
|
nic-id |
⊢ ( ( 𝜑 ⊼ 𝜑 ) ⊼ ( ( 𝜑 ⊼ 𝜑 ) ⊼ ( 𝜑 ⊼ 𝜑 ) ) ) |
5 |
3 4
|
nic-iimp1 |
⊢ ( ( 𝜑 ⊼ 𝜑 ) ⊼ ( ( 𝜑 ⊼ 𝜑 ) ⊼ ¬ 𝜑 ) ) |
6 |
5
|
nic-isw2 |
⊢ ( ( 𝜑 ⊼ 𝜑 ) ⊼ ( ¬ 𝜑 ⊼ ( 𝜑 ⊼ 𝜑 ) ) ) |
7 |
2 6
|
nic-iimp1 |
⊢ ( ( 𝜑 ⊼ 𝜑 ) ⊼ ( ¬ 𝜑 → 𝜑 ) ) |
8 |
7
|
nic-isw1 |
⊢ ( ( ¬ 𝜑 → 𝜑 ) ⊼ ( 𝜑 ⊼ 𝜑 ) ) |
9 |
|
nic-dfim |
⊢ ( ( ( ( ¬ 𝜑 → 𝜑 ) ⊼ ( 𝜑 ⊼ 𝜑 ) ) ⊼ ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) ⊼ ( ( ( ( ¬ 𝜑 → 𝜑 ) ⊼ ( 𝜑 ⊼ 𝜑 ) ) ⊼ ( ( ¬ 𝜑 → 𝜑 ) ⊼ ( 𝜑 ⊼ 𝜑 ) ) ) ⊼ ( ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ⊼ ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) ) ) |
10 |
9
|
nic-bi1 |
⊢ ( ( ( ¬ 𝜑 → 𝜑 ) ⊼ ( 𝜑 ⊼ 𝜑 ) ) ⊼ ( ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ⊼ ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) ) |
11 |
8 10
|
nic-mp |
⊢ ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) |