| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0ge0 | ⊢ ( 𝐾  ∈  ℕ0  →  0  ≤  𝐾 ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝐿  ∈  ℕ )  →  0  ≤  𝐾 ) | 
						
							| 3 |  | elnnz | ⊢ ( 𝐿  ∈  ℕ  ↔  ( 𝐿  ∈  ℤ  ∧  0  <  𝐿 ) ) | 
						
							| 4 |  | nn0re | ⊢ ( 𝐾  ∈  ℕ0  →  𝐾  ∈  ℝ ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  ( 𝐿  ∈  ℤ  ∧  0  <  𝐿 ) )  →  𝐾  ∈  ℝ ) | 
						
							| 6 |  | zre | ⊢ ( 𝐿  ∈  ℤ  →  𝐿  ∈  ℝ ) | 
						
							| 7 | 6 | ad2antrl | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  ( 𝐿  ∈  ℤ  ∧  0  <  𝐿 ) )  →  𝐿  ∈  ℝ ) | 
						
							| 8 |  | simprr | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  ( 𝐿  ∈  ℤ  ∧  0  <  𝐿 ) )  →  0  <  𝐿 ) | 
						
							| 9 | 5 7 8 | 3jca | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  ( 𝐿  ∈  ℤ  ∧  0  <  𝐿 ) )  →  ( 𝐾  ∈  ℝ  ∧  𝐿  ∈  ℝ  ∧  0  <  𝐿 ) ) | 
						
							| 10 | 3 9 | sylan2b | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝐿  ∈  ℕ )  →  ( 𝐾  ∈  ℝ  ∧  𝐿  ∈  ℝ  ∧  0  <  𝐿 ) ) | 
						
							| 11 |  | ge0div | ⊢ ( ( 𝐾  ∈  ℝ  ∧  𝐿  ∈  ℝ  ∧  0  <  𝐿 )  →  ( 0  ≤  𝐾  ↔  0  ≤  ( 𝐾  /  𝐿 ) ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝐿  ∈  ℕ )  →  ( 0  ≤  𝐾  ↔  0  ≤  ( 𝐾  /  𝐿 ) ) ) | 
						
							| 13 | 2 12 | mpbid | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝐿  ∈  ℕ )  →  0  ≤  ( 𝐾  /  𝐿 ) ) |