Step |
Hyp |
Ref |
Expression |
1 |
|
nnpw2p |
⊢ ( 𝑁 ∈ ℕ → ∃ 𝑖 ∈ ℕ0 ∃ 𝑟 ∈ ( 0 ..^ ( 2 ↑ 𝑖 ) ) 𝑁 = ( ( 2 ↑ 𝑖 ) + 𝑟 ) ) |
2 |
|
2nn |
⊢ 2 ∈ ℕ |
3 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑖 ∈ ℕ0 ) → ( 2 ↑ 𝑖 ) ∈ ℕ ) |
4 |
2 3
|
mpan |
⊢ ( 𝑖 ∈ ℕ0 → ( 2 ↑ 𝑖 ) ∈ ℕ ) |
5 |
|
elfzonn0 |
⊢ ( 𝑟 ∈ ( 0 ..^ ( 2 ↑ 𝑖 ) ) → 𝑟 ∈ ℕ0 ) |
6 |
|
nnnn0addcl |
⊢ ( ( ( 2 ↑ 𝑖 ) ∈ ℕ ∧ 𝑟 ∈ ℕ0 ) → ( ( 2 ↑ 𝑖 ) + 𝑟 ) ∈ ℕ ) |
7 |
4 5 6
|
syl2an |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ 𝑟 ∈ ( 0 ..^ ( 2 ↑ 𝑖 ) ) ) → ( ( 2 ↑ 𝑖 ) + 𝑟 ) ∈ ℕ ) |
8 |
|
eleq1 |
⊢ ( 𝑁 = ( ( 2 ↑ 𝑖 ) + 𝑟 ) → ( 𝑁 ∈ ℕ ↔ ( ( 2 ↑ 𝑖 ) + 𝑟 ) ∈ ℕ ) ) |
9 |
7 8
|
syl5ibrcom |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ 𝑟 ∈ ( 0 ..^ ( 2 ↑ 𝑖 ) ) ) → ( 𝑁 = ( ( 2 ↑ 𝑖 ) + 𝑟 ) → 𝑁 ∈ ℕ ) ) |
10 |
9
|
rexlimivv |
⊢ ( ∃ 𝑖 ∈ ℕ0 ∃ 𝑟 ∈ ( 0 ..^ ( 2 ↑ 𝑖 ) ) 𝑁 = ( ( 2 ↑ 𝑖 ) + 𝑟 ) → 𝑁 ∈ ℕ ) |
11 |
1 10
|
impbii |
⊢ ( 𝑁 ∈ ℕ ↔ ∃ 𝑖 ∈ ℕ0 ∃ 𝑟 ∈ ( 0 ..^ ( 2 ↑ 𝑖 ) ) 𝑁 = ( ( 2 ↑ 𝑖 ) + 𝑟 ) ) |