Step |
Hyp |
Ref |
Expression |
1 |
|
sltval2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 ↔ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ) ) |
2 |
|
fvex |
⊢ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ∈ V |
3 |
|
fvex |
⊢ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ∈ V |
4 |
2 3
|
brtp |
⊢ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ↔ ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ) ) |
5 |
|
1n0 |
⊢ 1o ≠ ∅ |
6 |
|
simpl |
⊢ ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) → ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ) |
7 |
|
simpr |
⊢ ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) → ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) |
8 |
6 7
|
neeq12d |
⊢ ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) → ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ≠ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ↔ 1o ≠ ∅ ) ) |
9 |
5 8
|
mpbiri |
⊢ ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) → ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ≠ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ) |
10 |
|
df-2o |
⊢ 2o = suc 1o |
11 |
|
df-1o |
⊢ 1o = suc ∅ |
12 |
10 11
|
eqeq12i |
⊢ ( 2o = 1o ↔ suc 1o = suc ∅ ) |
13 |
|
1on |
⊢ 1o ∈ On |
14 |
|
0elon |
⊢ ∅ ∈ On |
15 |
|
suc11 |
⊢ ( ( 1o ∈ On ∧ ∅ ∈ On ) → ( suc 1o = suc ∅ ↔ 1o = ∅ ) ) |
16 |
13 14 15
|
mp2an |
⊢ ( suc 1o = suc ∅ ↔ 1o = ∅ ) |
17 |
12 16
|
bitri |
⊢ ( 2o = 1o ↔ 1o = ∅ ) |
18 |
17
|
necon3bii |
⊢ ( 2o ≠ 1o ↔ 1o ≠ ∅ ) |
19 |
5 18
|
mpbir |
⊢ 2o ≠ 1o |
20 |
19
|
necomi |
⊢ 1o ≠ 2o |
21 |
|
simpl |
⊢ ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) → ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ) |
22 |
|
simpr |
⊢ ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) → ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) |
23 |
21 22
|
neeq12d |
⊢ ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) → ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ≠ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ↔ 1o ≠ 2o ) ) |
24 |
20 23
|
mpbiri |
⊢ ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) → ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ≠ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ) |
25 |
|
2on |
⊢ 2o ∈ On |
26 |
25
|
elexi |
⊢ 2o ∈ V |
27 |
26
|
prid2 |
⊢ 2o ∈ { 1o , 2o } |
28 |
27
|
nosgnn0i |
⊢ ∅ ≠ 2o |
29 |
|
simpl |
⊢ ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) → ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) |
30 |
|
simpr |
⊢ ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) → ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) |
31 |
29 30
|
neeq12d |
⊢ ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) → ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ≠ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ↔ ∅ ≠ 2o ) ) |
32 |
28 31
|
mpbiri |
⊢ ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) → ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ≠ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ) |
33 |
9 24 32
|
3jaoi |
⊢ ( ( ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ∨ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) = 2o ) ) → ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ≠ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ) |
34 |
4 33
|
sylbi |
⊢ ( ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) → ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ≠ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ) |
35 |
1 34
|
syl6bi |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 → ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ≠ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ) ) |
36 |
35
|
3impia |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 <s 𝐵 ) → ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ≠ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( 𝐵 ‘ 𝑥 ) } ) ) |