Step |
Hyp |
Ref |
Expression |
1 |
|
sltval2 |
|- ( ( A e. No /\ B e. No ) -> ( A ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) ) |
2 |
|
fvex |
|- ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) e. _V |
3 |
|
fvex |
|- ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) e. _V |
4 |
2 3
|
brtp |
|- ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) <-> ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) ) |
5 |
|
1n0 |
|- 1o =/= (/) |
6 |
|
simpl |
|- ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) -> ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o ) |
7 |
|
simpr |
|- ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) -> ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) |
8 |
6 7
|
neeq12d |
|- ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) -> ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) <-> 1o =/= (/) ) ) |
9 |
5 8
|
mpbiri |
|- ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) -> ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) |
10 |
|
df-2o |
|- 2o = suc 1o |
11 |
|
df-1o |
|- 1o = suc (/) |
12 |
10 11
|
eqeq12i |
|- ( 2o = 1o <-> suc 1o = suc (/) ) |
13 |
|
1on |
|- 1o e. On |
14 |
|
0elon |
|- (/) e. On |
15 |
|
suc11 |
|- ( ( 1o e. On /\ (/) e. On ) -> ( suc 1o = suc (/) <-> 1o = (/) ) ) |
16 |
13 14 15
|
mp2an |
|- ( suc 1o = suc (/) <-> 1o = (/) ) |
17 |
12 16
|
bitri |
|- ( 2o = 1o <-> 1o = (/) ) |
18 |
17
|
necon3bii |
|- ( 2o =/= 1o <-> 1o =/= (/) ) |
19 |
5 18
|
mpbir |
|- 2o =/= 1o |
20 |
19
|
necomi |
|- 1o =/= 2o |
21 |
|
simpl |
|- ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) -> ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o ) |
22 |
|
simpr |
|- ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) -> ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) |
23 |
21 22
|
neeq12d |
|- ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) -> ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) <-> 1o =/= 2o ) ) |
24 |
20 23
|
mpbiri |
|- ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) -> ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) |
25 |
|
2on |
|- 2o e. On |
26 |
25
|
elexi |
|- 2o e. _V |
27 |
26
|
prid2 |
|- 2o e. { 1o , 2o } |
28 |
27
|
nosgnn0i |
|- (/) =/= 2o |
29 |
|
simpl |
|- ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) -> ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) |
30 |
|
simpr |
|- ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) -> ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) |
31 |
29 30
|
neeq12d |
|- ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) -> ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) <-> (/) =/= 2o ) ) |
32 |
28 31
|
mpbiri |
|- ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) -> ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) |
33 |
9 24 32
|
3jaoi |
|- ( ( ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) \/ ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) -> ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) |
34 |
4 33
|
sylbi |
|- ( ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) -> ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) |
35 |
1 34
|
syl6bi |
|- ( ( A e. No /\ B e. No ) -> ( A ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) ) |
36 |
35
|
3impia |
|- ( ( A e. No /\ B e. No /\ A ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) |