| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brwdomi |
⊢ ( 𝐵 ≼* 𝐴 → ( 𝐵 = ∅ ∨ ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 ) ) |
| 2 |
|
simpr |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 = ∅ ) → 𝐵 = ∅ ) |
| 3 |
|
0fi |
⊢ ∅ ∈ Fin |
| 4 |
|
finnum |
⊢ ( ∅ ∈ Fin → ∅ ∈ dom card ) |
| 5 |
3 4
|
ax-mp |
⊢ ∅ ∈ dom card |
| 6 |
2 5
|
eqeltrdi |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 = ∅ ) → 𝐵 ∈ dom card ) |
| 7 |
|
fonum |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝑓 : 𝐴 –onto→ 𝐵 ) → 𝐵 ∈ dom card ) |
| 8 |
7
|
ex |
⊢ ( 𝐴 ∈ dom card → ( 𝑓 : 𝐴 –onto→ 𝐵 → 𝐵 ∈ dom card ) ) |
| 9 |
8
|
exlimdv |
⊢ ( 𝐴 ∈ dom card → ( ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 → 𝐵 ∈ dom card ) ) |
| 10 |
9
|
imp |
⊢ ( ( 𝐴 ∈ dom card ∧ ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 ) → 𝐵 ∈ dom card ) |
| 11 |
6 10
|
jaodan |
⊢ ( ( 𝐴 ∈ dom card ∧ ( 𝐵 = ∅ ∨ ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 ) ) → 𝐵 ∈ dom card ) |
| 12 |
1 11
|
sylan2 |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ≼* 𝐴 ) → 𝐵 ∈ dom card ) |