| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brwdomi | ⊢ ( 𝐵  ≼*  𝐴  →  ( 𝐵  =  ∅  ∨  ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 ) ) | 
						
							| 2 |  | simpr | ⊢ ( ( 𝐴  ∈  dom  card  ∧  𝐵  =  ∅ )  →  𝐵  =  ∅ ) | 
						
							| 3 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 4 |  | finnum | ⊢ ( ∅  ∈  Fin  →  ∅  ∈  dom  card ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ∅  ∈  dom  card | 
						
							| 6 | 2 5 | eqeltrdi | ⊢ ( ( 𝐴  ∈  dom  card  ∧  𝐵  =  ∅ )  →  𝐵  ∈  dom  card ) | 
						
							| 7 |  | fonum | ⊢ ( ( 𝐴  ∈  dom  card  ∧  𝑓 : 𝐴 –onto→ 𝐵 )  →  𝐵  ∈  dom  card ) | 
						
							| 8 | 7 | ex | ⊢ ( 𝐴  ∈  dom  card  →  ( 𝑓 : 𝐴 –onto→ 𝐵  →  𝐵  ∈  dom  card ) ) | 
						
							| 9 | 8 | exlimdv | ⊢ ( 𝐴  ∈  dom  card  →  ( ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵  →  𝐵  ∈  dom  card ) ) | 
						
							| 10 | 9 | imp | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 )  →  𝐵  ∈  dom  card ) | 
						
							| 11 | 6 10 | jaodan | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ( 𝐵  =  ∅  ∨  ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 ) )  →  𝐵  ∈  dom  card ) | 
						
							| 12 | 1 11 | sylan2 | ⊢ ( ( 𝐴  ∈  dom  card  ∧  𝐵  ≼*  𝐴 )  →  𝐵  ∈  dom  card ) |