Metamath Proof Explorer


Theorem numwdom

Description: A surjection maps numerable sets to numerable sets. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Assertion numwdom ( ( 𝐴 ∈ dom card ∧ 𝐵* 𝐴 ) → 𝐵 ∈ dom card )

Proof

Step Hyp Ref Expression
1 brwdomi ( 𝐵* 𝐴 → ( 𝐵 = ∅ ∨ ∃ 𝑓 𝑓 : 𝐴onto𝐵 ) )
2 simpr ( ( 𝐴 ∈ dom card ∧ 𝐵 = ∅ ) → 𝐵 = ∅ )
3 0fin ∅ ∈ Fin
4 finnum ( ∅ ∈ Fin → ∅ ∈ dom card )
5 3 4 ax-mp ∅ ∈ dom card
6 2 5 eqeltrdi ( ( 𝐴 ∈ dom card ∧ 𝐵 = ∅ ) → 𝐵 ∈ dom card )
7 fonum ( ( 𝐴 ∈ dom card ∧ 𝑓 : 𝐴onto𝐵 ) → 𝐵 ∈ dom card )
8 7 ex ( 𝐴 ∈ dom card → ( 𝑓 : 𝐴onto𝐵𝐵 ∈ dom card ) )
9 8 exlimdv ( 𝐴 ∈ dom card → ( ∃ 𝑓 𝑓 : 𝐴onto𝐵𝐵 ∈ dom card ) )
10 9 imp ( ( 𝐴 ∈ dom card ∧ ∃ 𝑓 𝑓 : 𝐴onto𝐵 ) → 𝐵 ∈ dom card )
11 6 10 jaodan ( ( 𝐴 ∈ dom card ∧ ( 𝐵 = ∅ ∨ ∃ 𝑓 𝑓 : 𝐴onto𝐵 ) ) → 𝐵 ∈ dom card )
12 1 11 sylan2 ( ( 𝐴 ∈ dom card ∧ 𝐵* 𝐴 ) → 𝐵 ∈ dom card )