| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldif | ⊢ ( 𝐴  ∈  ( ℝ  ∖  ℤ )  ↔  ( 𝐴  ∈  ℝ  ∧  ¬  𝐴  ∈  ℤ ) ) | 
						
							| 2 |  | zre | ⊢ ( 𝐵  ∈  ℤ  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | readdcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  +  𝐵 )  ∈  ℝ ) | 
						
							| 4 | 2 3 | sylan2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  +  𝐵 )  ∈  ℝ ) | 
						
							| 5 | 4 | adantlr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ¬  𝐴  ∈  ℤ )  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  +  𝐵 )  ∈  ℝ ) | 
						
							| 6 |  | zsubcl | ⊢ ( ( ( 𝐴  +  𝐵 )  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐴  +  𝐵 )  −  𝐵 )  ∈  ℤ ) | 
						
							| 7 | 6 | expcom | ⊢ ( 𝐵  ∈  ℤ  →  ( ( 𝐴  +  𝐵 )  ∈  ℤ  →  ( ( 𝐴  +  𝐵 )  −  𝐵 )  ∈  ℤ ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐴  +  𝐵 )  ∈  ℤ  →  ( ( 𝐴  +  𝐵 )  −  𝐵 )  ∈  ℤ ) ) | 
						
							| 9 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 10 |  | zcn | ⊢ ( 𝐵  ∈  ℤ  →  𝐵  ∈  ℂ ) | 
						
							| 11 |  | pncan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴  +  𝐵 )  −  𝐵 )  =  𝐴 ) | 
						
							| 12 | 9 10 11 | syl2an | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐴  +  𝐵 )  −  𝐵 )  =  𝐴 ) | 
						
							| 13 | 12 | eleq1d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℤ )  →  ( ( ( 𝐴  +  𝐵 )  −  𝐵 )  ∈  ℤ  ↔  𝐴  ∈  ℤ ) ) | 
						
							| 14 | 8 13 | sylibd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐴  +  𝐵 )  ∈  ℤ  →  𝐴  ∈  ℤ ) ) | 
						
							| 15 | 14 | con3d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℤ )  →  ( ¬  𝐴  ∈  ℤ  →  ¬  ( 𝐴  +  𝐵 )  ∈  ℤ ) ) | 
						
							| 16 | 15 | ex | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐵  ∈  ℤ  →  ( ¬  𝐴  ∈  ℤ  →  ¬  ( 𝐴  +  𝐵 )  ∈  ℤ ) ) ) | 
						
							| 17 | 16 | com23 | ⊢ ( 𝐴  ∈  ℝ  →  ( ¬  𝐴  ∈  ℤ  →  ( 𝐵  ∈  ℤ  →  ¬  ( 𝐴  +  𝐵 )  ∈  ℤ ) ) ) | 
						
							| 18 | 17 | imp31 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ¬  𝐴  ∈  ℤ )  ∧  𝐵  ∈  ℤ )  →  ¬  ( 𝐴  +  𝐵 )  ∈  ℤ ) | 
						
							| 19 | 5 18 | jca | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ¬  𝐴  ∈  ℤ )  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐴  +  𝐵 )  ∈  ℝ  ∧  ¬  ( 𝐴  +  𝐵 )  ∈  ℤ ) ) | 
						
							| 20 | 1 19 | sylanb | ⊢ ( ( 𝐴  ∈  ( ℝ  ∖  ℤ )  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐴  +  𝐵 )  ∈  ℝ  ∧  ¬  ( 𝐴  +  𝐵 )  ∈  ℤ ) ) | 
						
							| 21 |  | eldif | ⊢ ( ( 𝐴  +  𝐵 )  ∈  ( ℝ  ∖  ℤ )  ↔  ( ( 𝐴  +  𝐵 )  ∈  ℝ  ∧  ¬  ( 𝐴  +  𝐵 )  ∈  ℤ ) ) | 
						
							| 22 | 20 21 | sylibr | ⊢ ( ( 𝐴  ∈  ( ℝ  ∖  ℤ )  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  +  𝐵 )  ∈  ( ℝ  ∖  ℤ ) ) |