Step |
Hyp |
Ref |
Expression |
1 |
|
eldif |
⊢ ( 𝐴 ∈ ( ℝ ∖ ℤ ) ↔ ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) ) |
2 |
|
zre |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ ) |
3 |
|
readdcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
4 |
2 3
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
5 |
4
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) ∧ 𝐵 ∈ ℤ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
6 |
|
zsubcl |
⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) ∈ ℤ ) |
7 |
6
|
expcom |
⊢ ( 𝐵 ∈ ℤ → ( ( 𝐴 + 𝐵 ) ∈ ℤ → ( ( 𝐴 + 𝐵 ) − 𝐵 ) ∈ ℤ ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 + 𝐵 ) ∈ ℤ → ( ( 𝐴 + 𝐵 ) − 𝐵 ) ∈ ℤ ) ) |
9 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
10 |
|
zcn |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) |
11 |
|
pncan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ) |
12 |
9 10 11
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ) |
13 |
12
|
eleq1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( ( 𝐴 + 𝐵 ) − 𝐵 ) ∈ ℤ ↔ 𝐴 ∈ ℤ ) ) |
14 |
8 13
|
sylibd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 + 𝐵 ) ∈ ℤ → 𝐴 ∈ ℤ ) ) |
15 |
14
|
con3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ¬ 𝐴 ∈ ℤ → ¬ ( 𝐴 + 𝐵 ) ∈ ℤ ) ) |
16 |
15
|
ex |
⊢ ( 𝐴 ∈ ℝ → ( 𝐵 ∈ ℤ → ( ¬ 𝐴 ∈ ℤ → ¬ ( 𝐴 + 𝐵 ) ∈ ℤ ) ) ) |
17 |
16
|
com23 |
⊢ ( 𝐴 ∈ ℝ → ( ¬ 𝐴 ∈ ℤ → ( 𝐵 ∈ ℤ → ¬ ( 𝐴 + 𝐵 ) ∈ ℤ ) ) ) |
18 |
17
|
imp31 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) ∧ 𝐵 ∈ ℤ ) → ¬ ( 𝐴 + 𝐵 ) ∈ ℤ ) |
19 |
5 18
|
jca |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 + 𝐵 ) ∈ ℝ ∧ ¬ ( 𝐴 + 𝐵 ) ∈ ℤ ) ) |
20 |
1 19
|
sylanb |
⊢ ( ( 𝐴 ∈ ( ℝ ∖ ℤ ) ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 + 𝐵 ) ∈ ℝ ∧ ¬ ( 𝐴 + 𝐵 ) ∈ ℤ ) ) |
21 |
|
eldif |
⊢ ( ( 𝐴 + 𝐵 ) ∈ ( ℝ ∖ ℤ ) ↔ ( ( 𝐴 + 𝐵 ) ∈ ℝ ∧ ¬ ( 𝐴 + 𝐵 ) ∈ ℤ ) ) |
22 |
20 21
|
sylibr |
⊢ ( ( 𝐴 ∈ ( ℝ ∖ ℤ ) ∧ 𝐵 ∈ ℤ ) → ( 𝐴 + 𝐵 ) ∈ ( ℝ ∖ ℤ ) ) |