| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eldif | 
							 |-  ( A e. ( RR \ ZZ ) <-> ( A e. RR /\ -. A e. ZZ ) )  | 
						
						
							| 2 | 
							
								
							 | 
							zre | 
							 |-  ( B e. ZZ -> B e. RR )  | 
						
						
							| 3 | 
							
								
							 | 
							readdcl | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							sylan2 | 
							 |-  ( ( A e. RR /\ B e. ZZ ) -> ( A + B ) e. RR )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantlr | 
							 |-  ( ( ( A e. RR /\ -. A e. ZZ ) /\ B e. ZZ ) -> ( A + B ) e. RR )  | 
						
						
							| 6 | 
							
								
							 | 
							zsubcl | 
							 |-  ( ( ( A + B ) e. ZZ /\ B e. ZZ ) -> ( ( A + B ) - B ) e. ZZ )  | 
						
						
							| 7 | 
							
								6
							 | 
							expcom | 
							 |-  ( B e. ZZ -> ( ( A + B ) e. ZZ -> ( ( A + B ) - B ) e. ZZ ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantl | 
							 |-  ( ( A e. RR /\ B e. ZZ ) -> ( ( A + B ) e. ZZ -> ( ( A + B ) - B ) e. ZZ ) )  | 
						
						
							| 9 | 
							
								
							 | 
							recn | 
							 |-  ( A e. RR -> A e. CC )  | 
						
						
							| 10 | 
							
								
							 | 
							zcn | 
							 |-  ( B e. ZZ -> B e. CC )  | 
						
						
							| 11 | 
							
								
							 | 
							pncan | 
							 |-  ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) - B ) = A )  | 
						
						
							| 12 | 
							
								9 10 11
							 | 
							syl2an | 
							 |-  ( ( A e. RR /\ B e. ZZ ) -> ( ( A + B ) - B ) = A )  | 
						
						
							| 13 | 
							
								12
							 | 
							eleq1d | 
							 |-  ( ( A e. RR /\ B e. ZZ ) -> ( ( ( A + B ) - B ) e. ZZ <-> A e. ZZ ) )  | 
						
						
							| 14 | 
							
								8 13
							 | 
							sylibd | 
							 |-  ( ( A e. RR /\ B e. ZZ ) -> ( ( A + B ) e. ZZ -> A e. ZZ ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							con3d | 
							 |-  ( ( A e. RR /\ B e. ZZ ) -> ( -. A e. ZZ -> -. ( A + B ) e. ZZ ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							ex | 
							 |-  ( A e. RR -> ( B e. ZZ -> ( -. A e. ZZ -> -. ( A + B ) e. ZZ ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							com23 | 
							 |-  ( A e. RR -> ( -. A e. ZZ -> ( B e. ZZ -> -. ( A + B ) e. ZZ ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							imp31 | 
							 |-  ( ( ( A e. RR /\ -. A e. ZZ ) /\ B e. ZZ ) -> -. ( A + B ) e. ZZ )  | 
						
						
							| 19 | 
							
								5 18
							 | 
							jca | 
							 |-  ( ( ( A e. RR /\ -. A e. ZZ ) /\ B e. ZZ ) -> ( ( A + B ) e. RR /\ -. ( A + B ) e. ZZ ) )  | 
						
						
							| 20 | 
							
								1 19
							 | 
							sylanb | 
							 |-  ( ( A e. ( RR \ ZZ ) /\ B e. ZZ ) -> ( ( A + B ) e. RR /\ -. ( A + B ) e. ZZ ) )  | 
						
						
							| 21 | 
							
								
							 | 
							eldif | 
							 |-  ( ( A + B ) e. ( RR \ ZZ ) <-> ( ( A + B ) e. RR /\ -. ( A + B ) e. ZZ ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							sylibr | 
							 |-  ( ( A e. ( RR \ ZZ ) /\ B e. ZZ ) -> ( A + B ) e. ( RR \ ZZ ) )  |