| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elmapfn | ⊢ ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  →  𝐹  Fn  𝐴 ) | 
						
							| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) )  →  𝐹  Fn  𝐴 ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  →  𝐹  Fn  𝐴 ) | 
						
							| 4 |  | elmapfn | ⊢ ( 𝐺  ∈  ( 𝐵  ↑m  𝐴 )  →  𝐺  Fn  𝐴 ) | 
						
							| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) )  →  𝐺  Fn  𝐴 ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  →  𝐺  Fn  𝐴 ) | 
						
							| 7 |  | simpll | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 8 |  | inidm | ⊢ ( 𝐴  ∩  𝐴 )  =  𝐴 | 
						
							| 9 | 3 6 7 7 8 | offn | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  →  ( 𝐹  ∘f   +o  𝐺 )  Fn  𝐴 ) | 
						
							| 10 |  | elmapfn | ⊢ ( 𝐻  ∈  ( 𝐵  ↑m  𝐴 )  →  𝐻  Fn  𝐴 ) | 
						
							| 11 | 10 | 3ad2ant3 | ⊢ ( ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) )  →  𝐻  Fn  𝐴 ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  →  𝐻  Fn  𝐴 ) | 
						
							| 13 | 9 12 7 7 8 | offn | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  →  ( ( 𝐹  ∘f   +o  𝐺 )  ∘f   +o  𝐻 )  Fn  𝐴 ) | 
						
							| 14 | 6 12 7 7 8 | offn | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  →  ( 𝐺  ∘f   +o  𝐻 )  Fn  𝐴 ) | 
						
							| 15 | 3 14 7 7 8 | offn | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  →  ( 𝐹  ∘f   +o  ( 𝐺  ∘f   +o  𝐻 ) )  Fn  𝐴 ) | 
						
							| 16 |  | simpllr | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  𝐵  ∈  On ) | 
						
							| 17 |  | elmapi | ⊢ ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 18 | 17 | 3ad2ant1 | ⊢ ( ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 20 | 19 | ffvelcdmda | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑎 )  ∈  𝐵 ) | 
						
							| 21 |  | onelon | ⊢ ( ( 𝐵  ∈  On  ∧  ( 𝐹 ‘ 𝑎 )  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑎 )  ∈  On ) | 
						
							| 22 | 16 20 21 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑎 )  ∈  On ) | 
						
							| 23 |  | elmapi | ⊢ ( 𝐺  ∈  ( 𝐵  ↑m  𝐴 )  →  𝐺 : 𝐴 ⟶ 𝐵 ) | 
						
							| 24 | 23 | 3ad2ant2 | ⊢ ( ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) )  →  𝐺 : 𝐴 ⟶ 𝐵 ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  →  𝐺 : 𝐴 ⟶ 𝐵 ) | 
						
							| 26 | 25 | ffvelcdmda | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑎 )  ∈  𝐵 ) | 
						
							| 27 |  | onelon | ⊢ ( ( 𝐵  ∈  On  ∧  ( 𝐺 ‘ 𝑎 )  ∈  𝐵 )  →  ( 𝐺 ‘ 𝑎 )  ∈  On ) | 
						
							| 28 | 16 26 27 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑎 )  ∈  On ) | 
						
							| 29 |  | elmapi | ⊢ ( 𝐻  ∈  ( 𝐵  ↑m  𝐴 )  →  𝐻 : 𝐴 ⟶ 𝐵 ) | 
						
							| 30 | 29 | 3ad2ant3 | ⊢ ( ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) )  →  𝐻 : 𝐴 ⟶ 𝐵 ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  →  𝐻 : 𝐴 ⟶ 𝐵 ) | 
						
							| 32 | 31 | ffvelcdmda | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( 𝐻 ‘ 𝑎 )  ∈  𝐵 ) | 
						
							| 33 |  | onelon | ⊢ ( ( 𝐵  ∈  On  ∧  ( 𝐻 ‘ 𝑎 )  ∈  𝐵 )  →  ( 𝐻 ‘ 𝑎 )  ∈  On ) | 
						
							| 34 | 16 32 33 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( 𝐻 ‘ 𝑎 )  ∈  On ) | 
						
							| 35 |  | oaass | ⊢ ( ( ( 𝐹 ‘ 𝑎 )  ∈  On  ∧  ( 𝐺 ‘ 𝑎 )  ∈  On  ∧  ( 𝐻 ‘ 𝑎 )  ∈  On )  →  ( ( ( 𝐹 ‘ 𝑎 )  +o  ( 𝐺 ‘ 𝑎 ) )  +o  ( 𝐻 ‘ 𝑎 ) )  =  ( ( 𝐹 ‘ 𝑎 )  +o  ( ( 𝐺 ‘ 𝑎 )  +o  ( 𝐻 ‘ 𝑎 ) ) ) ) | 
						
							| 36 | 22 28 34 35 | syl3anc | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( ( ( 𝐹 ‘ 𝑎 )  +o  ( 𝐺 ‘ 𝑎 ) )  +o  ( 𝐻 ‘ 𝑎 ) )  =  ( ( 𝐹 ‘ 𝑎 )  +o  ( ( 𝐺 ‘ 𝑎 )  +o  ( 𝐻 ‘ 𝑎 ) ) ) ) | 
						
							| 37 | 3 | adantr | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  𝐹  Fn  𝐴 ) | 
						
							| 38 | 6 | adantr | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  𝐺  Fn  𝐴 ) | 
						
							| 39 | 7 | anim1i | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( 𝐴  ∈  𝑉  ∧  𝑎  ∈  𝐴 ) ) | 
						
							| 40 |  | fnfvof | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  ( 𝐴  ∈  𝑉  ∧  𝑎  ∈  𝐴 ) )  →  ( ( 𝐹  ∘f   +o  𝐺 ) ‘ 𝑎 )  =  ( ( 𝐹 ‘ 𝑎 )  +o  ( 𝐺 ‘ 𝑎 ) ) ) | 
						
							| 41 | 37 38 39 40 | syl21anc | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( ( 𝐹  ∘f   +o  𝐺 ) ‘ 𝑎 )  =  ( ( 𝐹 ‘ 𝑎 )  +o  ( 𝐺 ‘ 𝑎 ) ) ) | 
						
							| 42 | 41 | oveq1d | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( ( ( 𝐹  ∘f   +o  𝐺 ) ‘ 𝑎 )  +o  ( 𝐻 ‘ 𝑎 ) )  =  ( ( ( 𝐹 ‘ 𝑎 )  +o  ( 𝐺 ‘ 𝑎 ) )  +o  ( 𝐻 ‘ 𝑎 ) ) ) | 
						
							| 43 | 6 12 | jca | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  →  ( 𝐺  Fn  𝐴  ∧  𝐻  Fn  𝐴 ) ) | 
						
							| 44 |  | fnfvof | ⊢ ( ( ( 𝐺  Fn  𝐴  ∧  𝐻  Fn  𝐴 )  ∧  ( 𝐴  ∈  𝑉  ∧  𝑎  ∈  𝐴 ) )  →  ( ( 𝐺  ∘f   +o  𝐻 ) ‘ 𝑎 )  =  ( ( 𝐺 ‘ 𝑎 )  +o  ( 𝐻 ‘ 𝑎 ) ) ) | 
						
							| 45 | 43 39 44 | syl2an2r | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( ( 𝐺  ∘f   +o  𝐻 ) ‘ 𝑎 )  =  ( ( 𝐺 ‘ 𝑎 )  +o  ( 𝐻 ‘ 𝑎 ) ) ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑎 )  +o  ( ( 𝐺  ∘f   +o  𝐻 ) ‘ 𝑎 ) )  =  ( ( 𝐹 ‘ 𝑎 )  +o  ( ( 𝐺 ‘ 𝑎 )  +o  ( 𝐻 ‘ 𝑎 ) ) ) ) | 
						
							| 47 | 36 42 46 | 3eqtr4d | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( ( ( 𝐹  ∘f   +o  𝐺 ) ‘ 𝑎 )  +o  ( 𝐻 ‘ 𝑎 ) )  =  ( ( 𝐹 ‘ 𝑎 )  +o  ( ( 𝐺  ∘f   +o  𝐻 ) ‘ 𝑎 ) ) ) | 
						
							| 48 | 9 12 | jca | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  →  ( ( 𝐹  ∘f   +o  𝐺 )  Fn  𝐴  ∧  𝐻  Fn  𝐴 ) ) | 
						
							| 49 |  | fnfvof | ⊢ ( ( ( ( 𝐹  ∘f   +o  𝐺 )  Fn  𝐴  ∧  𝐻  Fn  𝐴 )  ∧  ( 𝐴  ∈  𝑉  ∧  𝑎  ∈  𝐴 ) )  →  ( ( ( 𝐹  ∘f   +o  𝐺 )  ∘f   +o  𝐻 ) ‘ 𝑎 )  =  ( ( ( 𝐹  ∘f   +o  𝐺 ) ‘ 𝑎 )  +o  ( 𝐻 ‘ 𝑎 ) ) ) | 
						
							| 50 | 48 39 49 | syl2an2r | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( ( ( 𝐹  ∘f   +o  𝐺 )  ∘f   +o  𝐻 ) ‘ 𝑎 )  =  ( ( ( 𝐹  ∘f   +o  𝐺 ) ‘ 𝑎 )  +o  ( 𝐻 ‘ 𝑎 ) ) ) | 
						
							| 51 | 3 14 | jca | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  →  ( 𝐹  Fn  𝐴  ∧  ( 𝐺  ∘f   +o  𝐻 )  Fn  𝐴 ) ) | 
						
							| 52 |  | fnfvof | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ( 𝐺  ∘f   +o  𝐻 )  Fn  𝐴 )  ∧  ( 𝐴  ∈  𝑉  ∧  𝑎  ∈  𝐴 ) )  →  ( ( 𝐹  ∘f   +o  ( 𝐺  ∘f   +o  𝐻 ) ) ‘ 𝑎 )  =  ( ( 𝐹 ‘ 𝑎 )  +o  ( ( 𝐺  ∘f   +o  𝐻 ) ‘ 𝑎 ) ) ) | 
						
							| 53 | 51 39 52 | syl2an2r | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( ( 𝐹  ∘f   +o  ( 𝐺  ∘f   +o  𝐻 ) ) ‘ 𝑎 )  =  ( ( 𝐹 ‘ 𝑎 )  +o  ( ( 𝐺  ∘f   +o  𝐻 ) ‘ 𝑎 ) ) ) | 
						
							| 54 | 47 50 53 | 3eqtr4d | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( ( ( 𝐹  ∘f   +o  𝐺 )  ∘f   +o  𝐻 ) ‘ 𝑎 )  =  ( ( 𝐹  ∘f   +o  ( 𝐺  ∘f   +o  𝐻 ) ) ‘ 𝑎 ) ) | 
						
							| 55 | 13 15 54 | eqfnfvd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  On )  ∧  ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝐻  ∈  ( 𝐵  ↑m  𝐴 ) ) )  →  ( ( 𝐹  ∘f   +o  𝐺 )  ∘f   +o  𝐻 )  =  ( 𝐹  ∘f   +o  ( 𝐺  ∘f   +o  𝐻 ) ) ) |