Step |
Hyp |
Ref |
Expression |
1 |
|
elmapfn |
⊢ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) → 𝐹 Fn 𝐴 ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) → 𝐹 Fn 𝐴 ) |
3 |
2
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → 𝐹 Fn 𝐴 ) |
4 |
|
elmapfn |
⊢ ( 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) → 𝐺 Fn 𝐴 ) |
5 |
4
|
3ad2ant2 |
⊢ ( ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) → 𝐺 Fn 𝐴 ) |
6 |
5
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → 𝐺 Fn 𝐴 ) |
7 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → 𝐴 ∈ 𝑉 ) |
8 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
9 |
3 6 7 7 8
|
offn |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → ( 𝐹 ∘f +o 𝐺 ) Fn 𝐴 ) |
10 |
|
elmapfn |
⊢ ( 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) → 𝐻 Fn 𝐴 ) |
11 |
10
|
3ad2ant3 |
⊢ ( ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) → 𝐻 Fn 𝐴 ) |
12 |
11
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → 𝐻 Fn 𝐴 ) |
13 |
9 12 7 7 8
|
offn |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → ( ( 𝐹 ∘f +o 𝐺 ) ∘f +o 𝐻 ) Fn 𝐴 ) |
14 |
6 12 7 7 8
|
offn |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → ( 𝐺 ∘f +o 𝐻 ) Fn 𝐴 ) |
15 |
3 14 7 7 8
|
offn |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → ( 𝐹 ∘f +o ( 𝐺 ∘f +o 𝐻 ) ) Fn 𝐴 ) |
16 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝐵 ∈ On ) |
17 |
|
elmapi |
⊢ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
18 |
17
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
19 |
18
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
20 |
19
|
ffvelcdmda |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝐵 ) |
21 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝐵 ) → ( 𝐹 ‘ 𝑎 ) ∈ On ) |
22 |
16 20 21
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑎 ) ∈ On ) |
23 |
|
elmapi |
⊢ ( 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) → 𝐺 : 𝐴 ⟶ 𝐵 ) |
24 |
23
|
3ad2ant2 |
⊢ ( ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) → 𝐺 : 𝐴 ⟶ 𝐵 ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → 𝐺 : 𝐴 ⟶ 𝐵 ) |
26 |
25
|
ffvelcdmda |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑎 ) ∈ 𝐵 ) |
27 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ ( 𝐺 ‘ 𝑎 ) ∈ 𝐵 ) → ( 𝐺 ‘ 𝑎 ) ∈ On ) |
28 |
16 26 27
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑎 ) ∈ On ) |
29 |
|
elmapi |
⊢ ( 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) → 𝐻 : 𝐴 ⟶ 𝐵 ) |
30 |
29
|
3ad2ant3 |
⊢ ( ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) → 𝐻 : 𝐴 ⟶ 𝐵 ) |
31 |
30
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → 𝐻 : 𝐴 ⟶ 𝐵 ) |
32 |
31
|
ffvelcdmda |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑎 ) ∈ 𝐵 ) |
33 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ ( 𝐻 ‘ 𝑎 ) ∈ 𝐵 ) → ( 𝐻 ‘ 𝑎 ) ∈ On ) |
34 |
16 32 33
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑎 ) ∈ On ) |
35 |
|
oaass |
⊢ ( ( ( 𝐹 ‘ 𝑎 ) ∈ On ∧ ( 𝐺 ‘ 𝑎 ) ∈ On ∧ ( 𝐻 ‘ 𝑎 ) ∈ On ) → ( ( ( 𝐹 ‘ 𝑎 ) +o ( 𝐺 ‘ 𝑎 ) ) +o ( 𝐻 ‘ 𝑎 ) ) = ( ( 𝐹 ‘ 𝑎 ) +o ( ( 𝐺 ‘ 𝑎 ) +o ( 𝐻 ‘ 𝑎 ) ) ) ) |
36 |
22 28 34 35
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑎 ) +o ( 𝐺 ‘ 𝑎 ) ) +o ( 𝐻 ‘ 𝑎 ) ) = ( ( 𝐹 ‘ 𝑎 ) +o ( ( 𝐺 ‘ 𝑎 ) +o ( 𝐻 ‘ 𝑎 ) ) ) ) |
37 |
3
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝐹 Fn 𝐴 ) |
38 |
6
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝐺 Fn 𝐴 ) |
39 |
7
|
anim1i |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴 ) ) |
40 |
|
fnfvof |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴 ) ) → ( ( 𝐹 ∘f +o 𝐺 ) ‘ 𝑎 ) = ( ( 𝐹 ‘ 𝑎 ) +o ( 𝐺 ‘ 𝑎 ) ) ) |
41 |
37 38 39 40
|
syl21anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐹 ∘f +o 𝐺 ) ‘ 𝑎 ) = ( ( 𝐹 ‘ 𝑎 ) +o ( 𝐺 ‘ 𝑎 ) ) ) |
42 |
41
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ( 𝐹 ∘f +o 𝐺 ) ‘ 𝑎 ) +o ( 𝐻 ‘ 𝑎 ) ) = ( ( ( 𝐹 ‘ 𝑎 ) +o ( 𝐺 ‘ 𝑎 ) ) +o ( 𝐻 ‘ 𝑎 ) ) ) |
43 |
6 12
|
jca |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → ( 𝐺 Fn 𝐴 ∧ 𝐻 Fn 𝐴 ) ) |
44 |
|
fnfvof |
⊢ ( ( ( 𝐺 Fn 𝐴 ∧ 𝐻 Fn 𝐴 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴 ) ) → ( ( 𝐺 ∘f +o 𝐻 ) ‘ 𝑎 ) = ( ( 𝐺 ‘ 𝑎 ) +o ( 𝐻 ‘ 𝑎 ) ) ) |
45 |
43 39 44
|
syl2an2r |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐺 ∘f +o 𝐻 ) ‘ 𝑎 ) = ( ( 𝐺 ‘ 𝑎 ) +o ( 𝐻 ‘ 𝑎 ) ) ) |
46 |
45
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑎 ) +o ( ( 𝐺 ∘f +o 𝐻 ) ‘ 𝑎 ) ) = ( ( 𝐹 ‘ 𝑎 ) +o ( ( 𝐺 ‘ 𝑎 ) +o ( 𝐻 ‘ 𝑎 ) ) ) ) |
47 |
36 42 46
|
3eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ( 𝐹 ∘f +o 𝐺 ) ‘ 𝑎 ) +o ( 𝐻 ‘ 𝑎 ) ) = ( ( 𝐹 ‘ 𝑎 ) +o ( ( 𝐺 ∘f +o 𝐻 ) ‘ 𝑎 ) ) ) |
48 |
9 12
|
jca |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → ( ( 𝐹 ∘f +o 𝐺 ) Fn 𝐴 ∧ 𝐻 Fn 𝐴 ) ) |
49 |
|
fnfvof |
⊢ ( ( ( ( 𝐹 ∘f +o 𝐺 ) Fn 𝐴 ∧ 𝐻 Fn 𝐴 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴 ) ) → ( ( ( 𝐹 ∘f +o 𝐺 ) ∘f +o 𝐻 ) ‘ 𝑎 ) = ( ( ( 𝐹 ∘f +o 𝐺 ) ‘ 𝑎 ) +o ( 𝐻 ‘ 𝑎 ) ) ) |
50 |
48 39 49
|
syl2an2r |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ( 𝐹 ∘f +o 𝐺 ) ∘f +o 𝐻 ) ‘ 𝑎 ) = ( ( ( 𝐹 ∘f +o 𝐺 ) ‘ 𝑎 ) +o ( 𝐻 ‘ 𝑎 ) ) ) |
51 |
3 14
|
jca |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → ( 𝐹 Fn 𝐴 ∧ ( 𝐺 ∘f +o 𝐻 ) Fn 𝐴 ) ) |
52 |
|
fnfvof |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ( 𝐺 ∘f +o 𝐻 ) Fn 𝐴 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴 ) ) → ( ( 𝐹 ∘f +o ( 𝐺 ∘f +o 𝐻 ) ) ‘ 𝑎 ) = ( ( 𝐹 ‘ 𝑎 ) +o ( ( 𝐺 ∘f +o 𝐻 ) ‘ 𝑎 ) ) ) |
53 |
51 39 52
|
syl2an2r |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐹 ∘f +o ( 𝐺 ∘f +o 𝐻 ) ) ‘ 𝑎 ) = ( ( 𝐹 ‘ 𝑎 ) +o ( ( 𝐺 ∘f +o 𝐻 ) ‘ 𝑎 ) ) ) |
54 |
47 50 53
|
3eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ( 𝐹 ∘f +o 𝐺 ) ∘f +o 𝐻 ) ‘ 𝑎 ) = ( ( 𝐹 ∘f +o ( 𝐺 ∘f +o 𝐻 ) ) ‘ 𝑎 ) ) |
55 |
13 15 54
|
eqfnfvd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → ( ( 𝐹 ∘f +o 𝐺 ) ∘f +o 𝐻 ) = ( 𝐹 ∘f +o ( 𝐺 ∘f +o 𝐻 ) ) ) |