| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elmapfn |
⊢ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) → 𝐹 Fn 𝐴 ) |
| 2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) → 𝐹 Fn 𝐴 ) |
| 3 |
2
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → 𝐹 Fn 𝐴 ) |
| 4 |
|
elmapfn |
⊢ ( 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) → 𝐺 Fn 𝐴 ) |
| 5 |
4
|
3ad2ant2 |
⊢ ( ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) → 𝐺 Fn 𝐴 ) |
| 6 |
5
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → 𝐺 Fn 𝐴 ) |
| 7 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → 𝐴 ∈ 𝑉 ) |
| 8 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
| 9 |
3 6 7 7 8
|
offn |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → ( 𝐹 ∘f +o 𝐺 ) Fn 𝐴 ) |
| 10 |
|
elmapfn |
⊢ ( 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) → 𝐻 Fn 𝐴 ) |
| 11 |
10
|
3ad2ant3 |
⊢ ( ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) → 𝐻 Fn 𝐴 ) |
| 12 |
11
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → 𝐻 Fn 𝐴 ) |
| 13 |
9 12 7 7 8
|
offn |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → ( ( 𝐹 ∘f +o 𝐺 ) ∘f +o 𝐻 ) Fn 𝐴 ) |
| 14 |
6 12 7 7 8
|
offn |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → ( 𝐺 ∘f +o 𝐻 ) Fn 𝐴 ) |
| 15 |
3 14 7 7 8
|
offn |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → ( 𝐹 ∘f +o ( 𝐺 ∘f +o 𝐻 ) ) Fn 𝐴 ) |
| 16 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝐵 ∈ On ) |
| 17 |
|
elmapi |
⊢ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 18 |
17
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 19 |
18
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 20 |
19
|
ffvelcdmda |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝐵 ) |
| 21 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝐵 ) → ( 𝐹 ‘ 𝑎 ) ∈ On ) |
| 22 |
16 20 21
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑎 ) ∈ On ) |
| 23 |
|
elmapi |
⊢ ( 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) → 𝐺 : 𝐴 ⟶ 𝐵 ) |
| 24 |
23
|
3ad2ant2 |
⊢ ( ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) → 𝐺 : 𝐴 ⟶ 𝐵 ) |
| 25 |
24
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → 𝐺 : 𝐴 ⟶ 𝐵 ) |
| 26 |
25
|
ffvelcdmda |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑎 ) ∈ 𝐵 ) |
| 27 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ ( 𝐺 ‘ 𝑎 ) ∈ 𝐵 ) → ( 𝐺 ‘ 𝑎 ) ∈ On ) |
| 28 |
16 26 27
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑎 ) ∈ On ) |
| 29 |
|
elmapi |
⊢ ( 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) → 𝐻 : 𝐴 ⟶ 𝐵 ) |
| 30 |
29
|
3ad2ant3 |
⊢ ( ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) → 𝐻 : 𝐴 ⟶ 𝐵 ) |
| 31 |
30
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → 𝐻 : 𝐴 ⟶ 𝐵 ) |
| 32 |
31
|
ffvelcdmda |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑎 ) ∈ 𝐵 ) |
| 33 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ ( 𝐻 ‘ 𝑎 ) ∈ 𝐵 ) → ( 𝐻 ‘ 𝑎 ) ∈ On ) |
| 34 |
16 32 33
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑎 ) ∈ On ) |
| 35 |
|
oaass |
⊢ ( ( ( 𝐹 ‘ 𝑎 ) ∈ On ∧ ( 𝐺 ‘ 𝑎 ) ∈ On ∧ ( 𝐻 ‘ 𝑎 ) ∈ On ) → ( ( ( 𝐹 ‘ 𝑎 ) +o ( 𝐺 ‘ 𝑎 ) ) +o ( 𝐻 ‘ 𝑎 ) ) = ( ( 𝐹 ‘ 𝑎 ) +o ( ( 𝐺 ‘ 𝑎 ) +o ( 𝐻 ‘ 𝑎 ) ) ) ) |
| 36 |
22 28 34 35
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑎 ) +o ( 𝐺 ‘ 𝑎 ) ) +o ( 𝐻 ‘ 𝑎 ) ) = ( ( 𝐹 ‘ 𝑎 ) +o ( ( 𝐺 ‘ 𝑎 ) +o ( 𝐻 ‘ 𝑎 ) ) ) ) |
| 37 |
3
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝐹 Fn 𝐴 ) |
| 38 |
6
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝐺 Fn 𝐴 ) |
| 39 |
7
|
anim1i |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴 ) ) |
| 40 |
|
fnfvof |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴 ) ) → ( ( 𝐹 ∘f +o 𝐺 ) ‘ 𝑎 ) = ( ( 𝐹 ‘ 𝑎 ) +o ( 𝐺 ‘ 𝑎 ) ) ) |
| 41 |
37 38 39 40
|
syl21anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐹 ∘f +o 𝐺 ) ‘ 𝑎 ) = ( ( 𝐹 ‘ 𝑎 ) +o ( 𝐺 ‘ 𝑎 ) ) ) |
| 42 |
41
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ( 𝐹 ∘f +o 𝐺 ) ‘ 𝑎 ) +o ( 𝐻 ‘ 𝑎 ) ) = ( ( ( 𝐹 ‘ 𝑎 ) +o ( 𝐺 ‘ 𝑎 ) ) +o ( 𝐻 ‘ 𝑎 ) ) ) |
| 43 |
6 12
|
jca |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → ( 𝐺 Fn 𝐴 ∧ 𝐻 Fn 𝐴 ) ) |
| 44 |
|
fnfvof |
⊢ ( ( ( 𝐺 Fn 𝐴 ∧ 𝐻 Fn 𝐴 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴 ) ) → ( ( 𝐺 ∘f +o 𝐻 ) ‘ 𝑎 ) = ( ( 𝐺 ‘ 𝑎 ) +o ( 𝐻 ‘ 𝑎 ) ) ) |
| 45 |
43 39 44
|
syl2an2r |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐺 ∘f +o 𝐻 ) ‘ 𝑎 ) = ( ( 𝐺 ‘ 𝑎 ) +o ( 𝐻 ‘ 𝑎 ) ) ) |
| 46 |
45
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑎 ) +o ( ( 𝐺 ∘f +o 𝐻 ) ‘ 𝑎 ) ) = ( ( 𝐹 ‘ 𝑎 ) +o ( ( 𝐺 ‘ 𝑎 ) +o ( 𝐻 ‘ 𝑎 ) ) ) ) |
| 47 |
36 42 46
|
3eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ( 𝐹 ∘f +o 𝐺 ) ‘ 𝑎 ) +o ( 𝐻 ‘ 𝑎 ) ) = ( ( 𝐹 ‘ 𝑎 ) +o ( ( 𝐺 ∘f +o 𝐻 ) ‘ 𝑎 ) ) ) |
| 48 |
9 12
|
jca |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → ( ( 𝐹 ∘f +o 𝐺 ) Fn 𝐴 ∧ 𝐻 Fn 𝐴 ) ) |
| 49 |
|
fnfvof |
⊢ ( ( ( ( 𝐹 ∘f +o 𝐺 ) Fn 𝐴 ∧ 𝐻 Fn 𝐴 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴 ) ) → ( ( ( 𝐹 ∘f +o 𝐺 ) ∘f +o 𝐻 ) ‘ 𝑎 ) = ( ( ( 𝐹 ∘f +o 𝐺 ) ‘ 𝑎 ) +o ( 𝐻 ‘ 𝑎 ) ) ) |
| 50 |
48 39 49
|
syl2an2r |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ( 𝐹 ∘f +o 𝐺 ) ∘f +o 𝐻 ) ‘ 𝑎 ) = ( ( ( 𝐹 ∘f +o 𝐺 ) ‘ 𝑎 ) +o ( 𝐻 ‘ 𝑎 ) ) ) |
| 51 |
3 14
|
jca |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → ( 𝐹 Fn 𝐴 ∧ ( 𝐺 ∘f +o 𝐻 ) Fn 𝐴 ) ) |
| 52 |
|
fnfvof |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ( 𝐺 ∘f +o 𝐻 ) Fn 𝐴 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴 ) ) → ( ( 𝐹 ∘f +o ( 𝐺 ∘f +o 𝐻 ) ) ‘ 𝑎 ) = ( ( 𝐹 ‘ 𝑎 ) +o ( ( 𝐺 ∘f +o 𝐻 ) ‘ 𝑎 ) ) ) |
| 53 |
51 39 52
|
syl2an2r |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐹 ∘f +o ( 𝐺 ∘f +o 𝐻 ) ) ‘ 𝑎 ) = ( ( 𝐹 ‘ 𝑎 ) +o ( ( 𝐺 ∘f +o 𝐻 ) ‘ 𝑎 ) ) ) |
| 54 |
47 50 53
|
3eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ( 𝐹 ∘f +o 𝐺 ) ∘f +o 𝐻 ) ‘ 𝑎 ) = ( ( 𝐹 ∘f +o ( 𝐺 ∘f +o 𝐻 ) ) ‘ 𝑎 ) ) |
| 55 |
13 15 54
|
eqfnfvd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On ) ∧ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐻 ∈ ( 𝐵 ↑m 𝐴 ) ) ) → ( ( 𝐹 ∘f +o 𝐺 ) ∘f +o 𝐻 ) = ( 𝐹 ∘f +o ( 𝐺 ∘f +o 𝐻 ) ) ) |