Metamath Proof Explorer


Theorem ofoaass

Description: Component-wise addition of ordinal-yielding functions is associative. (Contributed by RP, 5-Jan-2025)

Ref Expression
Assertion ofoaass A V B On F B A G B A H B A F + 𝑜 f G + 𝑜 f H = F + 𝑜 f G + 𝑜 f H

Proof

Step Hyp Ref Expression
1 elmapfn F B A F Fn A
2 1 3ad2ant1 F B A G B A H B A F Fn A
3 2 adantl A V B On F B A G B A H B A F Fn A
4 elmapfn G B A G Fn A
5 4 3ad2ant2 F B A G B A H B A G Fn A
6 5 adantl A V B On F B A G B A H B A G Fn A
7 simpll A V B On F B A G B A H B A A V
8 inidm A A = A
9 3 6 7 7 8 offn A V B On F B A G B A H B A F + 𝑜 f G Fn A
10 elmapfn H B A H Fn A
11 10 3ad2ant3 F B A G B A H B A H Fn A
12 11 adantl A V B On F B A G B A H B A H Fn A
13 9 12 7 7 8 offn A V B On F B A G B A H B A F + 𝑜 f G + 𝑜 f H Fn A
14 6 12 7 7 8 offn A V B On F B A G B A H B A G + 𝑜 f H Fn A
15 3 14 7 7 8 offn A V B On F B A G B A H B A F + 𝑜 f G + 𝑜 f H Fn A
16 simpllr A V B On F B A G B A H B A a A B On
17 elmapi F B A F : A B
18 17 3ad2ant1 F B A G B A H B A F : A B
19 18 adantl A V B On F B A G B A H B A F : A B
20 19 ffvelcdmda A V B On F B A G B A H B A a A F a B
21 onelon B On F a B F a On
22 16 20 21 syl2anc A V B On F B A G B A H B A a A F a On
23 elmapi G B A G : A B
24 23 3ad2ant2 F B A G B A H B A G : A B
25 24 adantl A V B On F B A G B A H B A G : A B
26 25 ffvelcdmda A V B On F B A G B A H B A a A G a B
27 onelon B On G a B G a On
28 16 26 27 syl2anc A V B On F B A G B A H B A a A G a On
29 elmapi H B A H : A B
30 29 3ad2ant3 F B A G B A H B A H : A B
31 30 adantl A V B On F B A G B A H B A H : A B
32 31 ffvelcdmda A V B On F B A G B A H B A a A H a B
33 onelon B On H a B H a On
34 16 32 33 syl2anc A V B On F B A G B A H B A a A H a On
35 oaass F a On G a On H a On F a + 𝑜 G a + 𝑜 H a = F a + 𝑜 G a + 𝑜 H a
36 22 28 34 35 syl3anc A V B On F B A G B A H B A a A F a + 𝑜 G a + 𝑜 H a = F a + 𝑜 G a + 𝑜 H a
37 3 adantr A V B On F B A G B A H B A a A F Fn A
38 6 adantr A V B On F B A G B A H B A a A G Fn A
39 7 anim1i A V B On F B A G B A H B A a A A V a A
40 fnfvof F Fn A G Fn A A V a A F + 𝑜 f G a = F a + 𝑜 G a
41 37 38 39 40 syl21anc A V B On F B A G B A H B A a A F + 𝑜 f G a = F a + 𝑜 G a
42 41 oveq1d A V B On F B A G B A H B A a A F + 𝑜 f G a + 𝑜 H a = F a + 𝑜 G a + 𝑜 H a
43 6 12 jca A V B On F B A G B A H B A G Fn A H Fn A
44 fnfvof G Fn A H Fn A A V a A G + 𝑜 f H a = G a + 𝑜 H a
45 43 39 44 syl2an2r A V B On F B A G B A H B A a A G + 𝑜 f H a = G a + 𝑜 H a
46 45 oveq2d A V B On F B A G B A H B A a A F a + 𝑜 G + 𝑜 f H a = F a + 𝑜 G a + 𝑜 H a
47 36 42 46 3eqtr4d A V B On F B A G B A H B A a A F + 𝑜 f G a + 𝑜 H a = F a + 𝑜 G + 𝑜 f H a
48 9 12 jca A V B On F B A G B A H B A F + 𝑜 f G Fn A H Fn A
49 fnfvof F + 𝑜 f G Fn A H Fn A A V a A F + 𝑜 f G + 𝑜 f H a = F + 𝑜 f G a + 𝑜 H a
50 48 39 49 syl2an2r A V B On F B A G B A H B A a A F + 𝑜 f G + 𝑜 f H a = F + 𝑜 f G a + 𝑜 H a
51 3 14 jca A V B On F B A G B A H B A F Fn A G + 𝑜 f H Fn A
52 fnfvof F Fn A G + 𝑜 f H Fn A A V a A F + 𝑜 f G + 𝑜 f H a = F a + 𝑜 G + 𝑜 f H a
53 51 39 52 syl2an2r A V B On F B A G B A H B A a A F + 𝑜 f G + 𝑜 f H a = F a + 𝑜 G + 𝑜 f H a
54 47 50 53 3eqtr4d A V B On F B A G B A H B A a A F + 𝑜 f G + 𝑜 f H a = F + 𝑜 f G + 𝑜 f H a
55 13 15 54 eqfnfvd A V B On F B A G B A H B A F + 𝑜 f G + 𝑜 f H = F + 𝑜 f G + 𝑜 f H