| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oppchom.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 2 |  | oppchom.o | ⊢ 𝑂  =  ( oppCat ‘ 𝐶 ) | 
						
							| 3 |  | homid | ⊢ Hom   =  Slot  ( Hom  ‘ ndx ) | 
						
							| 4 |  | slotsbhcdif | ⊢ ( ( Base ‘ ndx )  ≠  ( Hom  ‘ ndx )  ∧  ( Base ‘ ndx )  ≠  ( comp ‘ ndx )  ∧  ( Hom  ‘ ndx )  ≠  ( comp ‘ ndx ) ) | 
						
							| 5 | 4 | simp3i | ⊢ ( Hom  ‘ ndx )  ≠  ( comp ‘ ndx ) | 
						
							| 6 | 3 5 | setsnid | ⊢ ( Hom  ‘ ( 𝐶  sSet  〈 ( Hom  ‘ ndx ) ,  tpos  𝐻 〉 ) )  =  ( Hom  ‘ ( ( 𝐶  sSet  〈 ( Hom  ‘ ndx ) ,  tpos  𝐻 〉 )  sSet  〈 ( comp ‘ ndx ) ,  ( 𝑢  ∈  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) ) ,  𝑧  ∈  ( Base ‘ 𝐶 )  ↦  tpos  ( 〈 𝑧 ,  ( 2nd  ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st  ‘ 𝑢 ) ) ) 〉 ) ) | 
						
							| 7 | 1 | fvexi | ⊢ 𝐻  ∈  V | 
						
							| 8 | 7 | tposex | ⊢ tpos  𝐻  ∈  V | 
						
							| 9 | 3 | setsid | ⊢ ( ( 𝐶  ∈  V  ∧  tpos  𝐻  ∈  V )  →  tpos  𝐻  =  ( Hom  ‘ ( 𝐶  sSet  〈 ( Hom  ‘ ndx ) ,  tpos  𝐻 〉 ) ) ) | 
						
							| 10 | 8 9 | mpan2 | ⊢ ( 𝐶  ∈  V  →  tpos  𝐻  =  ( Hom  ‘ ( 𝐶  sSet  〈 ( Hom  ‘ ndx ) ,  tpos  𝐻 〉 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 12 |  | eqid | ⊢ ( comp ‘ 𝐶 )  =  ( comp ‘ 𝐶 ) | 
						
							| 13 | 11 1 12 2 | oppcval | ⊢ ( 𝐶  ∈  V  →  𝑂  =  ( ( 𝐶  sSet  〈 ( Hom  ‘ ndx ) ,  tpos  𝐻 〉 )  sSet  〈 ( comp ‘ ndx ) ,  ( 𝑢  ∈  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) ) ,  𝑧  ∈  ( Base ‘ 𝐶 )  ↦  tpos  ( 〈 𝑧 ,  ( 2nd  ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st  ‘ 𝑢 ) ) ) 〉 ) ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( 𝐶  ∈  V  →  ( Hom  ‘ 𝑂 )  =  ( Hom  ‘ ( ( 𝐶  sSet  〈 ( Hom  ‘ ndx ) ,  tpos  𝐻 〉 )  sSet  〈 ( comp ‘ ndx ) ,  ( 𝑢  ∈  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) ) ,  𝑧  ∈  ( Base ‘ 𝐶 )  ↦  tpos  ( 〈 𝑧 ,  ( 2nd  ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st  ‘ 𝑢 ) ) ) 〉 ) ) ) | 
						
							| 15 | 6 10 14 | 3eqtr4a | ⊢ ( 𝐶  ∈  V  →  tpos  𝐻  =  ( Hom  ‘ 𝑂 ) ) | 
						
							| 16 |  | tpos0 | ⊢ tpos  ∅  =  ∅ | 
						
							| 17 |  | fvprc | ⊢ ( ¬  𝐶  ∈  V  →  ( Hom  ‘ 𝐶 )  =  ∅ ) | 
						
							| 18 | 1 17 | eqtrid | ⊢ ( ¬  𝐶  ∈  V  →  𝐻  =  ∅ ) | 
						
							| 19 | 18 | tposeqd | ⊢ ( ¬  𝐶  ∈  V  →  tpos  𝐻  =  tpos  ∅ ) | 
						
							| 20 |  | fvprc | ⊢ ( ¬  𝐶  ∈  V  →  ( oppCat ‘ 𝐶 )  =  ∅ ) | 
						
							| 21 | 2 20 | eqtrid | ⊢ ( ¬  𝐶  ∈  V  →  𝑂  =  ∅ ) | 
						
							| 22 | 21 | fveq2d | ⊢ ( ¬  𝐶  ∈  V  →  ( Hom  ‘ 𝑂 )  =  ( Hom  ‘ ∅ ) ) | 
						
							| 23 | 3 | str0 | ⊢ ∅  =  ( Hom  ‘ ∅ ) | 
						
							| 24 | 22 23 | eqtr4di | ⊢ ( ¬  𝐶  ∈  V  →  ( Hom  ‘ 𝑂 )  =  ∅ ) | 
						
							| 25 | 16 19 24 | 3eqtr4a | ⊢ ( ¬  𝐶  ∈  V  →  tpos  𝐻  =  ( Hom  ‘ 𝑂 ) ) | 
						
							| 26 | 15 25 | pm2.61i | ⊢ tpos  𝐻  =  ( Hom  ‘ 𝑂 ) |