Step |
Hyp |
Ref |
Expression |
1 |
|
ordtNEW.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
ordtNEW.l |
⊢ ≤ = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) |
3 |
|
ordtposval.e |
⊢ 𝐸 = ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) |
4 |
|
ordtposval.f |
⊢ 𝐹 = ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) |
5 |
1 2
|
prsdm |
⊢ ( 𝐾 ∈ Proset → dom ≤ = 𝐵 ) |
6 |
5
|
sneqd |
⊢ ( 𝐾 ∈ Proset → { dom ≤ } = { 𝐵 } ) |
7 |
|
biidd |
⊢ ( 𝐾 ∈ Proset → ( ¬ 𝑦 ≤ 𝑥 ↔ ¬ 𝑦 ≤ 𝑥 ) ) |
8 |
5 7
|
rabeqbidv |
⊢ ( 𝐾 ∈ Proset → { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) |
9 |
5 8
|
mpteq12dv |
⊢ ( 𝐾 ∈ Proset → ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) = ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ) |
10 |
9
|
rneqd |
⊢ ( 𝐾 ∈ Proset → ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) = ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ) |
11 |
|
biidd |
⊢ ( 𝐾 ∈ Proset → ( ¬ 𝑥 ≤ 𝑦 ↔ ¬ 𝑥 ≤ 𝑦 ) ) |
12 |
5 11
|
rabeqbidv |
⊢ ( 𝐾 ∈ Proset → { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) |
13 |
5 12
|
mpteq12dv |
⊢ ( 𝐾 ∈ Proset → ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) = ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) |
14 |
13
|
rneqd |
⊢ ( 𝐾 ∈ Proset → ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) = ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) |
15 |
10 14
|
uneq12d |
⊢ ( 𝐾 ∈ Proset → ( ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) ) = ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) |
16 |
6 15
|
uneq12d |
⊢ ( 𝐾 ∈ Proset → ( { dom ≤ } ∪ ( ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) = ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) |
17 |
16
|
unieqd |
⊢ ( 𝐾 ∈ Proset → ∪ ( { dom ≤ } ∪ ( ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) = ∪ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) |
18 |
|
fvex |
⊢ ( le ‘ 𝐾 ) ∈ V |
19 |
18
|
inex1 |
⊢ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ∈ V |
20 |
2 19
|
eqeltri |
⊢ ≤ ∈ V |
21 |
|
eqid |
⊢ dom ≤ = dom ≤ |
22 |
|
eqid |
⊢ ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) = ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) |
23 |
|
eqid |
⊢ ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) = ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) |
24 |
21 22 23
|
ordtuni |
⊢ ( ≤ ∈ V → dom ≤ = ∪ ( { dom ≤ } ∪ ( ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) |
25 |
20 24
|
ax-mp |
⊢ dom ≤ = ∪ ( { dom ≤ } ∪ ( ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) |
26 |
5 25
|
eqtr3di |
⊢ ( 𝐾 ∈ Proset → 𝐵 = ∪ ( { dom ≤ } ∪ ( ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) |
27 |
3 4
|
uneq12i |
⊢ ( 𝐸 ∪ 𝐹 ) = ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) |
28 |
27
|
a1i |
⊢ ( 𝐾 ∈ Proset → ( 𝐸 ∪ 𝐹 ) = ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) |
29 |
28
|
uneq2d |
⊢ ( 𝐾 ∈ Proset → ( { 𝐵 } ∪ ( 𝐸 ∪ 𝐹 ) ) = ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) |
30 |
29
|
unieqd |
⊢ ( 𝐾 ∈ Proset → ∪ ( { 𝐵 } ∪ ( 𝐸 ∪ 𝐹 ) ) = ∪ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) |
31 |
17 26 30
|
3eqtr4d |
⊢ ( 𝐾 ∈ Proset → 𝐵 = ∪ ( { 𝐵 } ∪ ( 𝐸 ∪ 𝐹 ) ) ) |