Metamath Proof Explorer


Theorem ordtprsuni

Description: Value of the order topology. (Contributed by Thierry Arnoux, 13-Sep-2018)

Ref Expression
Hypotheses ordtNEW.b 𝐵 = ( Base ‘ 𝐾 )
ordtNEW.l = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) )
ordtposval.e 𝐸 = ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } )
ordtposval.f 𝐹 = ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } )
Assertion ordtprsuni ( 𝐾 ∈ Proset → 𝐵 = ( { 𝐵 } ∪ ( 𝐸𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 ordtNEW.b 𝐵 = ( Base ‘ 𝐾 )
2 ordtNEW.l = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) )
3 ordtposval.e 𝐸 = ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } )
4 ordtposval.f 𝐹 = ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } )
5 1 2 prsdm ( 𝐾 ∈ Proset → dom = 𝐵 )
6 5 sneqd ( 𝐾 ∈ Proset → { dom } = { 𝐵 } )
7 biidd ( 𝐾 ∈ Proset → ( ¬ 𝑦 𝑥 ↔ ¬ 𝑦 𝑥 ) )
8 5 7 rabeqbidv ( 𝐾 ∈ Proset → { 𝑦 ∈ dom ∣ ¬ 𝑦 𝑥 } = { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } )
9 5 8 mpteq12dv ( 𝐾 ∈ Proset → ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑦 𝑥 } ) = ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) )
10 9 rneqd ( 𝐾 ∈ Proset → ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑦 𝑥 } ) = ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) )
11 biidd ( 𝐾 ∈ Proset → ( ¬ 𝑥 𝑦 ↔ ¬ 𝑥 𝑦 ) )
12 5 11 rabeqbidv ( 𝐾 ∈ Proset → { 𝑦 ∈ dom ∣ ¬ 𝑥 𝑦 } = { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } )
13 5 12 mpteq12dv ( 𝐾 ∈ Proset → ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑥 𝑦 } ) = ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) )
14 13 rneqd ( 𝐾 ∈ Proset → ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑥 𝑦 } ) = ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) )
15 10 14 uneq12d ( 𝐾 ∈ Proset → ( ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑥 𝑦 } ) ) = ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) )
16 6 15 uneq12d ( 𝐾 ∈ Proset → ( { dom } ∪ ( ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑥 𝑦 } ) ) ) = ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) )
17 16 unieqd ( 𝐾 ∈ Proset → ( { dom } ∪ ( ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑥 𝑦 } ) ) ) = ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) )
18 fvex ( le ‘ 𝐾 ) ∈ V
19 18 inex1 ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ∈ V
20 2 19 eqeltri ∈ V
21 eqid dom = dom
22 eqid ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑦 𝑥 } ) = ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑦 𝑥 } )
23 eqid ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑥 𝑦 } ) = ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑥 𝑦 } )
24 21 22 23 ordtuni ( ∈ V → dom = ( { dom } ∪ ( ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑥 𝑦 } ) ) ) )
25 20 24 ax-mp dom = ( { dom } ∪ ( ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑥 𝑦 } ) ) )
26 5 25 eqtr3di ( 𝐾 ∈ Proset → 𝐵 = ( { dom } ∪ ( ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑥 𝑦 } ) ) ) )
27 3 4 uneq12i ( 𝐸𝐹 ) = ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) )
28 27 a1i ( 𝐾 ∈ Proset → ( 𝐸𝐹 ) = ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) )
29 28 uneq2d ( 𝐾 ∈ Proset → ( { 𝐵 } ∪ ( 𝐸𝐹 ) ) = ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) )
30 29 unieqd ( 𝐾 ∈ Proset → ( { 𝐵 } ∪ ( 𝐸𝐹 ) ) = ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) )
31 17 26 30 3eqtr4d ( 𝐾 ∈ Proset → 𝐵 = ( { 𝐵 } ∪ ( 𝐸𝐹 ) ) )