| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordtNEW.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | ordtNEW.l | ⊢  ≤   =  ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) ) | 
						
							| 3 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 4 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 5 | 3 4 | brcnv | ⊢ ( 𝑦 ◡  ≤  𝑥  ↔  𝑥  ≤  𝑦 ) | 
						
							| 6 | 5 | a1i | ⊢ ( 𝐾  ∈   Proset   →  ( 𝑦 ◡  ≤  𝑥  ↔  𝑥  ≤  𝑦 ) ) | 
						
							| 7 | 6 | notbid | ⊢ ( 𝐾  ∈   Proset   →  ( ¬  𝑦 ◡  ≤  𝑥  ↔  ¬  𝑥  ≤  𝑦 ) ) | 
						
							| 8 | 7 | rabbidv | ⊢ ( 𝐾  ∈   Proset   →  { 𝑦  ∈  𝐵  ∣  ¬  𝑦 ◡  ≤  𝑥 }  =  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) | 
						
							| 9 | 8 | mpteq2dv | ⊢ ( 𝐾  ∈   Proset   →  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦 ◡  ≤  𝑥 } )  =  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) | 
						
							| 10 | 9 | rneqd | ⊢ ( 𝐾  ∈   Proset   →  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦 ◡  ≤  𝑥 } )  =  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) | 
						
							| 11 | 4 3 | brcnv | ⊢ ( 𝑥 ◡  ≤  𝑦  ↔  𝑦  ≤  𝑥 ) | 
						
							| 12 | 11 | a1i | ⊢ ( 𝐾  ∈   Proset   →  ( 𝑥 ◡  ≤  𝑦  ↔  𝑦  ≤  𝑥 ) ) | 
						
							| 13 | 12 | notbid | ⊢ ( 𝐾  ∈   Proset   →  ( ¬  𝑥 ◡  ≤  𝑦  ↔  ¬  𝑦  ≤  𝑥 ) ) | 
						
							| 14 | 13 | rabbidv | ⊢ ( 𝐾  ∈   Proset   →  { 𝑦  ∈  𝐵  ∣  ¬  𝑥 ◡  ≤  𝑦 }  =  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } ) | 
						
							| 15 | 14 | mpteq2dv | ⊢ ( 𝐾  ∈   Proset   →  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥 ◡  ≤  𝑦 } )  =  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } ) ) | 
						
							| 16 | 15 | rneqd | ⊢ ( 𝐾  ∈   Proset   →  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥 ◡  ≤  𝑦 } )  =  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } ) ) | 
						
							| 17 | 10 16 | uneq12d | ⊢ ( 𝐾  ∈   Proset   →  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦 ◡  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥 ◡  ≤  𝑦 } ) )  =  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } ) ) ) | 
						
							| 18 |  | uncom | ⊢ ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } ) )  =  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) | 
						
							| 19 | 17 18 | eqtrdi | ⊢ ( 𝐾  ∈   Proset   →  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦 ◡  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥 ◡  ≤  𝑦 } ) )  =  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) ) | 
						
							| 20 | 19 | uneq2d | ⊢ ( 𝐾  ∈   Proset   →  ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦 ◡  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥 ◡  ≤  𝑦 } ) ) )  =  ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) ) ) | 
						
							| 21 | 20 | fveq2d | ⊢ ( 𝐾  ∈   Proset   →  ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦 ◡  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥 ◡  ≤  𝑦 } ) ) ) )  =  ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) ) ) ) | 
						
							| 22 | 21 | fveq2d | ⊢ ( 𝐾  ∈   Proset   →  ( topGen ‘ ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦 ◡  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥 ◡  ≤  𝑦 } ) ) ) ) )  =  ( topGen ‘ ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) ) ) ) ) | 
						
							| 23 |  | eqid | ⊢ ( ODual ‘ 𝐾 )  =  ( ODual ‘ 𝐾 ) | 
						
							| 24 | 23 | oduprs | ⊢ ( 𝐾  ∈   Proset   →  ( ODual ‘ 𝐾 )  ∈   Proset  ) | 
						
							| 25 | 23 1 | odubas | ⊢ 𝐵  =  ( Base ‘ ( ODual ‘ 𝐾 ) ) | 
						
							| 26 | 2 | cnveqi | ⊢ ◡  ≤   =  ◡ ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) ) | 
						
							| 27 |  | cnvin | ⊢ ◡ ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) )  =  ( ◡ ( le ‘ 𝐾 )  ∩  ◡ ( 𝐵  ×  𝐵 ) ) | 
						
							| 28 |  | eqid | ⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 ) | 
						
							| 29 | 23 28 | oduleval | ⊢ ◡ ( le ‘ 𝐾 )  =  ( le ‘ ( ODual ‘ 𝐾 ) ) | 
						
							| 30 |  | cnvxp | ⊢ ◡ ( 𝐵  ×  𝐵 )  =  ( 𝐵  ×  𝐵 ) | 
						
							| 31 | 29 30 | ineq12i | ⊢ ( ◡ ( le ‘ 𝐾 )  ∩  ◡ ( 𝐵  ×  𝐵 ) )  =  ( ( le ‘ ( ODual ‘ 𝐾 ) )  ∩  ( 𝐵  ×  𝐵 ) ) | 
						
							| 32 | 26 27 31 | 3eqtri | ⊢ ◡  ≤   =  ( ( le ‘ ( ODual ‘ 𝐾 ) )  ∩  ( 𝐵  ×  𝐵 ) ) | 
						
							| 33 |  | eqid | ⊢ ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦 ◡  ≤  𝑥 } )  =  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦 ◡  ≤  𝑥 } ) | 
						
							| 34 |  | eqid | ⊢ ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥 ◡  ≤  𝑦 } )  =  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥 ◡  ≤  𝑦 } ) | 
						
							| 35 | 25 32 33 34 | ordtprsval | ⊢ ( ( ODual ‘ 𝐾 )  ∈   Proset   →  ( ordTop ‘ ◡  ≤  )  =  ( topGen ‘ ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦 ◡  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥 ◡  ≤  𝑦 } ) ) ) ) ) ) | 
						
							| 36 | 24 35 | syl | ⊢ ( 𝐾  ∈   Proset   →  ( ordTop ‘ ◡  ≤  )  =  ( topGen ‘ ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦 ◡  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥 ◡  ≤  𝑦 } ) ) ) ) ) ) | 
						
							| 37 |  | eqid | ⊢ ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  =  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } ) | 
						
							| 38 |  | eqid | ⊢ ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } )  =  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) | 
						
							| 39 | 1 2 37 38 | ordtprsval | ⊢ ( 𝐾  ∈   Proset   →  ( ordTop ‘  ≤  )  =  ( topGen ‘ ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) ) ) ) ) | 
						
							| 40 | 22 36 39 | 3eqtr4d | ⊢ ( 𝐾  ∈   Proset   →  ( ordTop ‘ ◡  ≤  )  =  ( ordTop ‘  ≤  ) ) |