Step |
Hyp |
Ref |
Expression |
1 |
|
ordtNEW.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
ordtNEW.l |
⊢ ≤ = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) |
3 |
|
vex |
⊢ 𝑦 ∈ V |
4 |
|
vex |
⊢ 𝑥 ∈ V |
5 |
3 4
|
brcnv |
⊢ ( 𝑦 ◡ ≤ 𝑥 ↔ 𝑥 ≤ 𝑦 ) |
6 |
5
|
a1i |
⊢ ( 𝐾 ∈ Proset → ( 𝑦 ◡ ≤ 𝑥 ↔ 𝑥 ≤ 𝑦 ) ) |
7 |
6
|
notbid |
⊢ ( 𝐾 ∈ Proset → ( ¬ 𝑦 ◡ ≤ 𝑥 ↔ ¬ 𝑥 ≤ 𝑦 ) ) |
8 |
7
|
rabbidv |
⊢ ( 𝐾 ∈ Proset → { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ◡ ≤ 𝑥 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) |
9 |
8
|
mpteq2dv |
⊢ ( 𝐾 ∈ Proset → ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ◡ ≤ 𝑥 } ) = ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) |
10 |
9
|
rneqd |
⊢ ( 𝐾 ∈ Proset → ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ◡ ≤ 𝑥 } ) = ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) |
11 |
4 3
|
brcnv |
⊢ ( 𝑥 ◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑥 ) |
12 |
11
|
a1i |
⊢ ( 𝐾 ∈ Proset → ( 𝑥 ◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑥 ) ) |
13 |
12
|
notbid |
⊢ ( 𝐾 ∈ Proset → ( ¬ 𝑥 ◡ ≤ 𝑦 ↔ ¬ 𝑦 ≤ 𝑥 ) ) |
14 |
13
|
rabbidv |
⊢ ( 𝐾 ∈ Proset → { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ◡ ≤ 𝑦 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) |
15 |
14
|
mpteq2dv |
⊢ ( 𝐾 ∈ Proset → ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ◡ ≤ 𝑦 } ) = ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ) |
16 |
15
|
rneqd |
⊢ ( 𝐾 ∈ Proset → ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ◡ ≤ 𝑦 } ) = ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ) |
17 |
10 16
|
uneq12d |
⊢ ( 𝐾 ∈ Proset → ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ◡ ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ◡ ≤ 𝑦 } ) ) = ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ) ) |
18 |
|
uncom |
⊢ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ) = ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) |
19 |
17 18
|
eqtrdi |
⊢ ( 𝐾 ∈ Proset → ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ◡ ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ◡ ≤ 𝑦 } ) ) = ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) |
20 |
19
|
uneq2d |
⊢ ( 𝐾 ∈ Proset → ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ◡ ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ◡ ≤ 𝑦 } ) ) ) = ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) |
21 |
20
|
fveq2d |
⊢ ( 𝐾 ∈ Proset → ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ◡ ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ◡ ≤ 𝑦 } ) ) ) ) = ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ) |
22 |
21
|
fveq2d |
⊢ ( 𝐾 ∈ Proset → ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ◡ ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ◡ ≤ 𝑦 } ) ) ) ) ) = ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ) ) |
23 |
|
eqid |
⊢ ( ODual ‘ 𝐾 ) = ( ODual ‘ 𝐾 ) |
24 |
23
|
oduprs |
⊢ ( 𝐾 ∈ Proset → ( ODual ‘ 𝐾 ) ∈ Proset ) |
25 |
23 1
|
odubas |
⊢ 𝐵 = ( Base ‘ ( ODual ‘ 𝐾 ) ) |
26 |
2
|
cnveqi |
⊢ ◡ ≤ = ◡ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) |
27 |
|
cnvin |
⊢ ◡ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) = ( ◡ ( le ‘ 𝐾 ) ∩ ◡ ( 𝐵 × 𝐵 ) ) |
28 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
29 |
23 28
|
oduleval |
⊢ ◡ ( le ‘ 𝐾 ) = ( le ‘ ( ODual ‘ 𝐾 ) ) |
30 |
|
cnvxp |
⊢ ◡ ( 𝐵 × 𝐵 ) = ( 𝐵 × 𝐵 ) |
31 |
29 30
|
ineq12i |
⊢ ( ◡ ( le ‘ 𝐾 ) ∩ ◡ ( 𝐵 × 𝐵 ) ) = ( ( le ‘ ( ODual ‘ 𝐾 ) ) ∩ ( 𝐵 × 𝐵 ) ) |
32 |
26 27 31
|
3eqtri |
⊢ ◡ ≤ = ( ( le ‘ ( ODual ‘ 𝐾 ) ) ∩ ( 𝐵 × 𝐵 ) ) |
33 |
|
eqid |
⊢ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ◡ ≤ 𝑥 } ) = ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ◡ ≤ 𝑥 } ) |
34 |
|
eqid |
⊢ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ◡ ≤ 𝑦 } ) = ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ◡ ≤ 𝑦 } ) |
35 |
25 32 33 34
|
ordtprsval |
⊢ ( ( ODual ‘ 𝐾 ) ∈ Proset → ( ordTop ‘ ◡ ≤ ) = ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ◡ ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ◡ ≤ 𝑦 } ) ) ) ) ) ) |
36 |
24 35
|
syl |
⊢ ( 𝐾 ∈ Proset → ( ordTop ‘ ◡ ≤ ) = ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ◡ ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ◡ ≤ 𝑦 } ) ) ) ) ) ) |
37 |
|
eqid |
⊢ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) = ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) |
38 |
|
eqid |
⊢ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) = ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) |
39 |
1 2 37 38
|
ordtprsval |
⊢ ( 𝐾 ∈ Proset → ( ordTop ‘ ≤ ) = ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ) ) |
40 |
22 36 39
|
3eqtr4d |
⊢ ( 𝐾 ∈ Proset → ( ordTop ‘ ◡ ≤ ) = ( ordTop ‘ ≤ ) ) |