| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordtNEW.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | ordtNEW.l | ⊢  ≤   =  ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) ) | 
						
							| 3 |  | fvex | ⊢ ( le ‘ 𝐾 )  ∈  V | 
						
							| 4 | 3 | inex1 | ⊢ ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) )  ∈  V | 
						
							| 5 | 2 4 | eqeltri | ⊢  ≤   ∈  V | 
						
							| 6 | 5 | inex1 | ⊢ (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∈  V | 
						
							| 7 |  | eqid | ⊢ dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) | 
						
							| 8 |  | eqid | ⊢ ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  =  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } ) | 
						
							| 9 |  | eqid | ⊢ ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } )  =  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) | 
						
							| 10 | 7 8 9 | ordtval | ⊢ ( (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∈  V  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  =  ( topGen ‘ ( fi ‘ ( { dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) }  ∪  ( ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  ∪  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) ) ) ) ) ) | 
						
							| 11 | 6 10 | mp1i | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  =  ( topGen ‘ ( fi ‘ ( { dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) }  ∪  ( ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  ∪  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) ) ) ) ) ) | 
						
							| 12 |  | ordttop | ⊢ (  ≤   ∈  V  →  ( ordTop ‘  ≤  )  ∈  Top ) | 
						
							| 13 | 5 12 | ax-mp | ⊢ ( ordTop ‘  ≤  )  ∈  Top | 
						
							| 14 |  | fvex | ⊢ ( Base ‘ 𝐾 )  ∈  V | 
						
							| 15 | 1 14 | eqeltri | ⊢ 𝐵  ∈  V | 
						
							| 16 | 15 | ssex | ⊢ ( 𝐴  ⊆  𝐵  →  𝐴  ∈  V ) | 
						
							| 17 |  | resttop | ⊢ ( ( ( ordTop ‘  ≤  )  ∈  Top  ∧  𝐴  ∈  V )  →  ( ( ordTop ‘  ≤  )  ↾t  𝐴 )  ∈  Top ) | 
						
							| 18 | 13 16 17 | sylancr | ⊢ ( 𝐴  ⊆  𝐵  →  ( ( ordTop ‘  ≤  )  ↾t  𝐴 )  ∈  Top ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( ( ordTop ‘  ≤  )  ↾t  𝐴 )  ∈  Top ) | 
						
							| 20 | 1 | ressprs | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( 𝐾  ↾s  𝐴 )  ∈   Proset  ) | 
						
							| 21 |  | eqid | ⊢ ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  =  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) | 
						
							| 22 |  | eqid | ⊢ ( ( le ‘ ( 𝐾  ↾s  𝐴 ) )  ∩  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) )  =  ( ( le ‘ ( 𝐾  ↾s  𝐴 ) )  ∩  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) ) | 
						
							| 23 | 21 22 | prsdm | ⊢ ( ( 𝐾  ↾s  𝐴 )  ∈   Proset   →  dom  ( ( le ‘ ( 𝐾  ↾s  𝐴 ) )  ∩  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) )  =  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) | 
						
							| 24 | 20 23 | syl | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  dom  ( ( le ‘ ( 𝐾  ↾s  𝐴 ) )  ∩  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) )  =  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) | 
						
							| 25 |  | eqid | ⊢ ( 𝐾  ↾s  𝐴 )  =  ( 𝐾  ↾s  𝐴 ) | 
						
							| 26 | 25 1 | ressbas2 | ⊢ ( 𝐴  ⊆  𝐵  →  𝐴  =  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) | 
						
							| 27 |  | fvex | ⊢ ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ∈  V | 
						
							| 28 | 26 27 | eqeltrdi | ⊢ ( 𝐴  ⊆  𝐵  →  𝐴  ∈  V ) | 
						
							| 29 |  | eqid | ⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 ) | 
						
							| 30 | 25 29 | ressle | ⊢ ( 𝐴  ∈  V  →  ( le ‘ 𝐾 )  =  ( le ‘ ( 𝐾  ↾s  𝐴 ) ) ) | 
						
							| 31 | 28 30 | syl | ⊢ ( 𝐴  ⊆  𝐵  →  ( le ‘ 𝐾 )  =  ( le ‘ ( 𝐾  ↾s  𝐴 ) ) ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( le ‘ 𝐾 )  =  ( le ‘ ( 𝐾  ↾s  𝐴 ) ) ) | 
						
							| 33 | 26 | adantl | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  𝐴  =  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) | 
						
							| 34 | 33 | sqxpeqd | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( 𝐴  ×  𝐴 )  =  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) ) | 
						
							| 35 | 32 34 | ineq12d | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( ( le ‘ 𝐾 )  ∩  ( 𝐴  ×  𝐴 ) )  =  ( ( le ‘ ( 𝐾  ↾s  𝐴 ) )  ∩  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) ) ) | 
						
							| 36 | 35 | dmeqd | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  dom  ( ( le ‘ 𝐾 )  ∩  ( 𝐴  ×  𝐴 ) )  =  dom  ( ( le ‘ ( 𝐾  ↾s  𝐴 ) )  ∩  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) ) ) | 
						
							| 37 | 24 36 33 | 3eqtr4d | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  dom  ( ( le ‘ 𝐾 )  ∩  ( 𝐴  ×  𝐴 ) )  =  𝐴 ) | 
						
							| 38 | 1 2 | prsss | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  ( ( le ‘ 𝐾 )  ∩  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 39 | 38 | dmeqd | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  dom  ( ( le ‘ 𝐾 )  ∩  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 40 | 1 2 | prsdm | ⊢ ( 𝐾  ∈   Proset   →  dom   ≤   =  𝐵 ) | 
						
							| 41 | 40 | sseq2d | ⊢ ( 𝐾  ∈   Proset   →  ( 𝐴  ⊆  dom   ≤   ↔  𝐴  ⊆  𝐵 ) ) | 
						
							| 42 | 41 | biimpar | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  𝐴  ⊆  dom   ≤  ) | 
						
							| 43 |  | sseqin2 | ⊢ ( 𝐴  ⊆  dom   ≤   ↔  ( dom   ≤   ∩  𝐴 )  =  𝐴 ) | 
						
							| 44 | 42 43 | sylib | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( dom   ≤   ∩  𝐴 )  =  𝐴 ) | 
						
							| 45 | 37 39 44 | 3eqtr4d | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  ( dom   ≤   ∩  𝐴 ) ) | 
						
							| 46 | 5 12 | mp1i | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( ordTop ‘  ≤  )  ∈  Top ) | 
						
							| 47 | 16 | adantl | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  𝐴  ∈  V ) | 
						
							| 48 |  | eqid | ⊢ dom   ≤   =  dom   ≤ | 
						
							| 49 | 48 | ordttopon | ⊢ (  ≤   ∈  V  →  ( ordTop ‘  ≤  )  ∈  ( TopOn ‘ dom   ≤  ) ) | 
						
							| 50 | 5 49 | mp1i | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( ordTop ‘  ≤  )  ∈  ( TopOn ‘ dom   ≤  ) ) | 
						
							| 51 |  | toponmax | ⊢ ( ( ordTop ‘  ≤  )  ∈  ( TopOn ‘ dom   ≤  )  →  dom   ≤   ∈  ( ordTop ‘  ≤  ) ) | 
						
							| 52 | 50 51 | syl | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  dom   ≤   ∈  ( ordTop ‘  ≤  ) ) | 
						
							| 53 |  | elrestr | ⊢ ( ( ( ordTop ‘  ≤  )  ∈  Top  ∧  𝐴  ∈  V  ∧  dom   ≤   ∈  ( ordTop ‘  ≤  ) )  →  ( dom   ≤   ∩  𝐴 )  ∈  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) ) | 
						
							| 54 | 46 47 52 53 | syl3anc | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( dom   ≤   ∩  𝐴 )  ∈  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) ) | 
						
							| 55 | 45 54 | eqeltrd | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∈  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) ) | 
						
							| 56 | 55 | snssd | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  { dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) }  ⊆  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) ) | 
						
							| 57 |  | rabeq | ⊢ ( dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  ( dom   ≤   ∩  𝐴 )  →  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 }  =  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } ) | 
						
							| 58 | 45 57 | syl | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 }  =  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } ) | 
						
							| 59 | 45 58 | mpteq12dv | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  =  ( 𝑥  ∈  ( dom   ≤   ∩  𝐴 )  ↦  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } ) ) | 
						
							| 60 | 59 | rneqd | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  =  ran  ( 𝑥  ∈  ( dom   ≤   ∩  𝐴 )  ↦  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } ) ) | 
						
							| 61 |  | inrab2 | ⊢ ( { 𝑦  ∈  dom   ≤   ∣  ¬  𝑦  ≤  𝑥 }  ∩  𝐴 )  =  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑦  ≤  𝑥 } | 
						
							| 62 |  | inss2 | ⊢ ( dom   ≤   ∩  𝐴 )  ⊆  𝐴 | 
						
							| 63 |  | simpr | ⊢ ( ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  ∧  𝑦  ∈  ( dom   ≤   ∩  𝐴 ) )  →  𝑦  ∈  ( dom   ≤   ∩  𝐴 ) ) | 
						
							| 64 | 62 63 | sselid | ⊢ ( ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  ∧  𝑦  ∈  ( dom   ≤   ∩  𝐴 ) )  →  𝑦  ∈  𝐴 ) | 
						
							| 65 |  | simpr | ⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) ) | 
						
							| 66 | 62 65 | sselid | ⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  ∧  𝑦  ∈  ( dom   ≤   ∩  𝐴 ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 68 |  | brinxp | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( 𝑦  ≤  𝑥  ↔  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 ) ) | 
						
							| 69 | 64 67 68 | syl2anc | ⊢ ( ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  ∧  𝑦  ∈  ( dom   ≤   ∩  𝐴 ) )  →  ( 𝑦  ≤  𝑥  ↔  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 ) ) | 
						
							| 70 | 69 | notbid | ⊢ ( ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  ∧  𝑦  ∈  ( dom   ≤   ∩  𝐴 ) )  →  ( ¬  𝑦  ≤  𝑥  ↔  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 ) ) | 
						
							| 71 | 70 | rabbidva | ⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑦  ≤  𝑥 }  =  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } ) | 
						
							| 72 | 61 71 | eqtrid | ⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  ( { 𝑦  ∈  dom   ≤   ∣  ¬  𝑦  ≤  𝑥 }  ∩  𝐴 )  =  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } ) | 
						
							| 73 | 5 12 | mp1i | ⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  ( ordTop ‘  ≤  )  ∈  Top ) | 
						
							| 74 | 47 | adantr | ⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  𝐴  ∈  V ) | 
						
							| 75 |  | simpl | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  𝐾  ∈   Proset  ) | 
						
							| 76 |  | inss1 | ⊢ ( dom   ≤   ∩  𝐴 )  ⊆  dom   ≤ | 
						
							| 77 | 76 | sseli | ⊢ ( 𝑥  ∈  ( dom   ≤   ∩  𝐴 )  →  𝑥  ∈  dom   ≤  ) | 
						
							| 78 | 48 | ordtopn1 | ⊢ ( (  ≤   ∈  V  ∧  𝑥  ∈  dom   ≤  )  →  { 𝑦  ∈  dom   ≤   ∣  ¬  𝑦  ≤  𝑥 }  ∈  ( ordTop ‘  ≤  ) ) | 
						
							| 79 | 5 78 | mpan | ⊢ ( 𝑥  ∈  dom   ≤   →  { 𝑦  ∈  dom   ≤   ∣  ¬  𝑦  ≤  𝑥 }  ∈  ( ordTop ‘  ≤  ) ) | 
						
							| 80 | 79 | adantl | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝑥  ∈  dom   ≤  )  →  { 𝑦  ∈  dom   ≤   ∣  ¬  𝑦  ≤  𝑥 }  ∈  ( ordTop ‘  ≤  ) ) | 
						
							| 81 | 75 77 80 | syl2an | ⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  { 𝑦  ∈  dom   ≤   ∣  ¬  𝑦  ≤  𝑥 }  ∈  ( ordTop ‘  ≤  ) ) | 
						
							| 82 |  | elrestr | ⊢ ( ( ( ordTop ‘  ≤  )  ∈  Top  ∧  𝐴  ∈  V  ∧  { 𝑦  ∈  dom   ≤   ∣  ¬  𝑦  ≤  𝑥 }  ∈  ( ordTop ‘  ≤  ) )  →  ( { 𝑦  ∈  dom   ≤   ∣  ¬  𝑦  ≤  𝑥 }  ∩  𝐴 )  ∈  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) ) | 
						
							| 83 | 73 74 81 82 | syl3anc | ⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  ( { 𝑦  ∈  dom   ≤   ∣  ¬  𝑦  ≤  𝑥 }  ∩  𝐴 )  ∈  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) ) | 
						
							| 84 | 72 83 | eqeltrrd | ⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 }  ∈  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) ) | 
						
							| 85 | 84 | fmpttd | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( 𝑥  ∈  ( dom   ≤   ∩  𝐴 )  ↦  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } ) : ( dom   ≤   ∩  𝐴 ) ⟶ ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) ) | 
						
							| 86 | 85 | frnd | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ran  ( 𝑥  ∈  ( dom   ≤   ∩  𝐴 )  ↦  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  ⊆  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) ) | 
						
							| 87 | 60 86 | eqsstrd | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  ⊆  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) ) | 
						
							| 88 |  | rabeq | ⊢ ( dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  ( dom   ≤   ∩  𝐴 )  →  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 }  =  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) | 
						
							| 89 | 45 88 | syl | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 }  =  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) | 
						
							| 90 | 45 89 | mpteq12dv | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } )  =  ( 𝑥  ∈  ( dom   ≤   ∩  𝐴 )  ↦  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) ) | 
						
							| 91 | 90 | rneqd | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } )  =  ran  ( 𝑥  ∈  ( dom   ≤   ∩  𝐴 )  ↦  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) ) | 
						
							| 92 |  | inrab2 | ⊢ ( { 𝑦  ∈  dom   ≤   ∣  ¬  𝑥  ≤  𝑦 }  ∩  𝐴 )  =  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑥  ≤  𝑦 } | 
						
							| 93 |  | brinxp | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  →  ( 𝑥  ≤  𝑦  ↔  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 ) ) | 
						
							| 94 | 67 64 93 | syl2anc | ⊢ ( ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  ∧  𝑦  ∈  ( dom   ≤   ∩  𝐴 ) )  →  ( 𝑥  ≤  𝑦  ↔  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 ) ) | 
						
							| 95 | 94 | notbid | ⊢ ( ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  ∧  𝑦  ∈  ( dom   ≤   ∩  𝐴 ) )  →  ( ¬  𝑥  ≤  𝑦  ↔  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 ) ) | 
						
							| 96 | 95 | rabbidva | ⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑥  ≤  𝑦 }  =  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) | 
						
							| 97 | 92 96 | eqtrid | ⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  ( { 𝑦  ∈  dom   ≤   ∣  ¬  𝑥  ≤  𝑦 }  ∩  𝐴 )  =  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) | 
						
							| 98 | 48 | ordtopn2 | ⊢ ( (  ≤   ∈  V  ∧  𝑥  ∈  dom   ≤  )  →  { 𝑦  ∈  dom   ≤   ∣  ¬  𝑥  ≤  𝑦 }  ∈  ( ordTop ‘  ≤  ) ) | 
						
							| 99 | 5 98 | mpan | ⊢ ( 𝑥  ∈  dom   ≤   →  { 𝑦  ∈  dom   ≤   ∣  ¬  𝑥  ≤  𝑦 }  ∈  ( ordTop ‘  ≤  ) ) | 
						
							| 100 | 99 | adantl | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝑥  ∈  dom   ≤  )  →  { 𝑦  ∈  dom   ≤   ∣  ¬  𝑥  ≤  𝑦 }  ∈  ( ordTop ‘  ≤  ) ) | 
						
							| 101 | 75 77 100 | syl2an | ⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  { 𝑦  ∈  dom   ≤   ∣  ¬  𝑥  ≤  𝑦 }  ∈  ( ordTop ‘  ≤  ) ) | 
						
							| 102 |  | elrestr | ⊢ ( ( ( ordTop ‘  ≤  )  ∈  Top  ∧  𝐴  ∈  V  ∧  { 𝑦  ∈  dom   ≤   ∣  ¬  𝑥  ≤  𝑦 }  ∈  ( ordTop ‘  ≤  ) )  →  ( { 𝑦  ∈  dom   ≤   ∣  ¬  𝑥  ≤  𝑦 }  ∩  𝐴 )  ∈  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) ) | 
						
							| 103 | 73 74 101 102 | syl3anc | ⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  ( { 𝑦  ∈  dom   ≤   ∣  ¬  𝑥  ≤  𝑦 }  ∩  𝐴 )  ∈  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) ) | 
						
							| 104 | 97 103 | eqeltrrd | ⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 }  ∈  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) ) | 
						
							| 105 | 104 | fmpttd | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( 𝑥  ∈  ( dom   ≤   ∩  𝐴 )  ↦  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) : ( dom   ≤   ∩  𝐴 ) ⟶ ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) ) | 
						
							| 106 | 105 | frnd | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ran  ( 𝑥  ∈  ( dom   ≤   ∩  𝐴 )  ↦  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } )  ⊆  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) ) | 
						
							| 107 | 91 106 | eqsstrd | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } )  ⊆  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) ) | 
						
							| 108 | 87 107 | unssd | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  ∪  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) )  ⊆  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) ) | 
						
							| 109 | 56 108 | unssd | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( { dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) }  ∪  ( ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  ∪  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) ) )  ⊆  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) ) | 
						
							| 110 |  | tgfiss | ⊢ ( ( ( ( ordTop ‘  ≤  )  ↾t  𝐴 )  ∈  Top  ∧  ( { dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) }  ∪  ( ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  ∪  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) ) )  ⊆  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) )  →  ( topGen ‘ ( fi ‘ ( { dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) }  ∪  ( ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  ∪  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) ) ) ) )  ⊆  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) ) | 
						
							| 111 | 19 109 110 | syl2anc | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( topGen ‘ ( fi ‘ ( { dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) }  ∪  ( ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  ∪  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) ) ) ) )  ⊆  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) ) | 
						
							| 112 | 11 111 | eqsstrd | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ⊆  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) ) |