| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordtNEW.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
ordtNEW.l |
⊢ ≤ = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) |
| 3 |
|
fvex |
⊢ ( le ‘ 𝐾 ) ∈ V |
| 4 |
3
|
inex1 |
⊢ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ∈ V |
| 5 |
2 4
|
eqeltri |
⊢ ≤ ∈ V |
| 6 |
5
|
inex1 |
⊢ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∈ V |
| 7 |
|
eqid |
⊢ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) = dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) |
| 8 |
|
eqid |
⊢ ran ( 𝑥 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ↦ { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ) = ran ( 𝑥 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ↦ { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ) |
| 9 |
|
eqid |
⊢ ran ( 𝑥 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ↦ { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 } ) = ran ( 𝑥 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ↦ { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 } ) |
| 10 |
7 8 9
|
ordtval |
⊢ ( ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∈ V → ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) = ( topGen ‘ ( fi ‘ ( { dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) } ∪ ( ran ( 𝑥 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ↦ { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ↦ { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 } ) ) ) ) ) ) |
| 11 |
6 10
|
mp1i |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) = ( topGen ‘ ( fi ‘ ( { dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) } ∪ ( ran ( 𝑥 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ↦ { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ↦ { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 } ) ) ) ) ) ) |
| 12 |
|
ordttop |
⊢ ( ≤ ∈ V → ( ordTop ‘ ≤ ) ∈ Top ) |
| 13 |
5 12
|
ax-mp |
⊢ ( ordTop ‘ ≤ ) ∈ Top |
| 14 |
|
fvex |
⊢ ( Base ‘ 𝐾 ) ∈ V |
| 15 |
1 14
|
eqeltri |
⊢ 𝐵 ∈ V |
| 16 |
15
|
ssex |
⊢ ( 𝐴 ⊆ 𝐵 → 𝐴 ∈ V ) |
| 17 |
|
resttop |
⊢ ( ( ( ordTop ‘ ≤ ) ∈ Top ∧ 𝐴 ∈ V ) → ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ∈ Top ) |
| 18 |
13 16 17
|
sylancr |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ∈ Top ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ∈ Top ) |
| 20 |
1
|
ressprs |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐾 ↾s 𝐴 ) ∈ Proset ) |
| 21 |
|
eqid |
⊢ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) |
| 22 |
|
eqid |
⊢ ( ( le ‘ ( 𝐾 ↾s 𝐴 ) ) ∩ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) = ( ( le ‘ ( 𝐾 ↾s 𝐴 ) ) ∩ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) |
| 23 |
21 22
|
prsdm |
⊢ ( ( 𝐾 ↾s 𝐴 ) ∈ Proset → dom ( ( le ‘ ( 𝐾 ↾s 𝐴 ) ) ∩ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
| 24 |
20 23
|
syl |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → dom ( ( le ‘ ( 𝐾 ↾s 𝐴 ) ) ∩ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
| 25 |
|
eqid |
⊢ ( 𝐾 ↾s 𝐴 ) = ( 𝐾 ↾s 𝐴 ) |
| 26 |
25 1
|
ressbas2 |
⊢ ( 𝐴 ⊆ 𝐵 → 𝐴 = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
| 27 |
|
fvex |
⊢ ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ∈ V |
| 28 |
26 27
|
eqeltrdi |
⊢ ( 𝐴 ⊆ 𝐵 → 𝐴 ∈ V ) |
| 29 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 30 |
25 29
|
ressle |
⊢ ( 𝐴 ∈ V → ( le ‘ 𝐾 ) = ( le ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
| 31 |
28 30
|
syl |
⊢ ( 𝐴 ⊆ 𝐵 → ( le ‘ 𝐾 ) = ( le ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
| 32 |
31
|
adantl |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ( le ‘ 𝐾 ) = ( le ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
| 33 |
26
|
adantl |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 = ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) |
| 34 |
33
|
sqxpeqd |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 × 𝐴 ) = ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) |
| 35 |
32 34
|
ineq12d |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ( ( le ‘ 𝐾 ) ∩ ( 𝐴 × 𝐴 ) ) = ( ( le ‘ ( 𝐾 ↾s 𝐴 ) ) ∩ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ) |
| 36 |
35
|
dmeqd |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → dom ( ( le ‘ 𝐾 ) ∩ ( 𝐴 × 𝐴 ) ) = dom ( ( le ‘ ( 𝐾 ↾s 𝐴 ) ) ∩ ( ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) × ( Base ‘ ( 𝐾 ↾s 𝐴 ) ) ) ) ) |
| 37 |
24 36 33
|
3eqtr4d |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → dom ( ( le ‘ 𝐾 ) ∩ ( 𝐴 × 𝐴 ) ) = 𝐴 ) |
| 38 |
1 2
|
prsss |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ( ≤ ∩ ( 𝐴 × 𝐴 ) ) = ( ( le ‘ 𝐾 ) ∩ ( 𝐴 × 𝐴 ) ) ) |
| 39 |
38
|
dmeqd |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) = dom ( ( le ‘ 𝐾 ) ∩ ( 𝐴 × 𝐴 ) ) ) |
| 40 |
1 2
|
prsdm |
⊢ ( 𝐾 ∈ Proset → dom ≤ = 𝐵 ) |
| 41 |
40
|
sseq2d |
⊢ ( 𝐾 ∈ Proset → ( 𝐴 ⊆ dom ≤ ↔ 𝐴 ⊆ 𝐵 ) ) |
| 42 |
41
|
biimpar |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ⊆ dom ≤ ) |
| 43 |
|
sseqin2 |
⊢ ( 𝐴 ⊆ dom ≤ ↔ ( dom ≤ ∩ 𝐴 ) = 𝐴 ) |
| 44 |
42 43
|
sylib |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ( dom ≤ ∩ 𝐴 ) = 𝐴 ) |
| 45 |
37 39 44
|
3eqtr4d |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) = ( dom ≤ ∩ 𝐴 ) ) |
| 46 |
5 12
|
mp1i |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ( ordTop ‘ ≤ ) ∈ Top ) |
| 47 |
16
|
adantl |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ∈ V ) |
| 48 |
|
eqid |
⊢ dom ≤ = dom ≤ |
| 49 |
48
|
ordttopon |
⊢ ( ≤ ∈ V → ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ dom ≤ ) ) |
| 50 |
5 49
|
mp1i |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ dom ≤ ) ) |
| 51 |
|
toponmax |
⊢ ( ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ dom ≤ ) → dom ≤ ∈ ( ordTop ‘ ≤ ) ) |
| 52 |
50 51
|
syl |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → dom ≤ ∈ ( ordTop ‘ ≤ ) ) |
| 53 |
|
elrestr |
⊢ ( ( ( ordTop ‘ ≤ ) ∈ Top ∧ 𝐴 ∈ V ∧ dom ≤ ∈ ( ordTop ‘ ≤ ) ) → ( dom ≤ ∩ 𝐴 ) ∈ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ) |
| 54 |
46 47 52 53
|
syl3anc |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ( dom ≤ ∩ 𝐴 ) ∈ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ) |
| 55 |
45 54
|
eqeltrd |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∈ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ) |
| 56 |
55
|
snssd |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → { dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) } ⊆ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ) |
| 57 |
|
rabeq |
⊢ ( dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) = ( dom ≤ ∩ 𝐴 ) → { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } = { 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ∣ ¬ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ) |
| 58 |
45 57
|
syl |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } = { 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ∣ ¬ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ) |
| 59 |
45 58
|
mpteq12dv |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ( 𝑥 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ↦ { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ) = ( 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ↦ { 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ∣ ¬ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ) ) |
| 60 |
59
|
rneqd |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ran ( 𝑥 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ↦ { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ) = ran ( 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ↦ { 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ∣ ¬ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ) ) |
| 61 |
|
inrab2 |
⊢ ( { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ∩ 𝐴 ) = { 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ∣ ¬ 𝑦 ≤ 𝑥 } |
| 62 |
|
inss2 |
⊢ ( dom ≤ ∩ 𝐴 ) ⊆ 𝐴 |
| 63 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ) ∧ 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ) → 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ) |
| 64 |
62 63
|
sselid |
⊢ ( ( ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ) ∧ 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ) → 𝑦 ∈ 𝐴 ) |
| 65 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ) → 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ) |
| 66 |
62 65
|
sselid |
⊢ ( ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) |
| 67 |
66
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ) ∧ 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) |
| 68 |
|
brinxp |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ≤ 𝑥 ↔ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) |
| 69 |
64 67 68
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ) ∧ 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ) → ( 𝑦 ≤ 𝑥 ↔ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) |
| 70 |
69
|
notbid |
⊢ ( ( ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ) ∧ 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ) → ( ¬ 𝑦 ≤ 𝑥 ↔ ¬ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) |
| 71 |
70
|
rabbidva |
⊢ ( ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ) → { 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ∣ ¬ 𝑦 ≤ 𝑥 } = { 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ∣ ¬ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ) |
| 72 |
61 71
|
eqtrid |
⊢ ( ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ) → ( { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ∩ 𝐴 ) = { 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ∣ ¬ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ) |
| 73 |
5 12
|
mp1i |
⊢ ( ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ) → ( ordTop ‘ ≤ ) ∈ Top ) |
| 74 |
47
|
adantr |
⊢ ( ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ) → 𝐴 ∈ V ) |
| 75 |
|
simpl |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → 𝐾 ∈ Proset ) |
| 76 |
|
inss1 |
⊢ ( dom ≤ ∩ 𝐴 ) ⊆ dom ≤ |
| 77 |
76
|
sseli |
⊢ ( 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) → 𝑥 ∈ dom ≤ ) |
| 78 |
48
|
ordtopn1 |
⊢ ( ( ≤ ∈ V ∧ 𝑥 ∈ dom ≤ ) → { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ∈ ( ordTop ‘ ≤ ) ) |
| 79 |
5 78
|
mpan |
⊢ ( 𝑥 ∈ dom ≤ → { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ∈ ( ordTop ‘ ≤ ) ) |
| 80 |
79
|
adantl |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝑥 ∈ dom ≤ ) → { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ∈ ( ordTop ‘ ≤ ) ) |
| 81 |
75 77 80
|
syl2an |
⊢ ( ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ) → { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ∈ ( ordTop ‘ ≤ ) ) |
| 82 |
|
elrestr |
⊢ ( ( ( ordTop ‘ ≤ ) ∈ Top ∧ 𝐴 ∈ V ∧ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ∈ ( ordTop ‘ ≤ ) ) → ( { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ∩ 𝐴 ) ∈ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ) |
| 83 |
73 74 81 82
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ) → ( { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ∩ 𝐴 ) ∈ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ) |
| 84 |
72 83
|
eqeltrrd |
⊢ ( ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ) → { 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ∣ ¬ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ∈ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ) |
| 85 |
84
|
fmpttd |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ( 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ↦ { 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ∣ ¬ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ) : ( dom ≤ ∩ 𝐴 ) ⟶ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ) |
| 86 |
85
|
frnd |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ran ( 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ↦ { 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ∣ ¬ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ) ⊆ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ) |
| 87 |
60 86
|
eqsstrd |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ran ( 𝑥 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ↦ { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ) ⊆ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ) |
| 88 |
|
rabeq |
⊢ ( dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) = ( dom ≤ ∩ 𝐴 ) → { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 } = { 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ∣ ¬ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 } ) |
| 89 |
45 88
|
syl |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 } = { 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ∣ ¬ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 } ) |
| 90 |
45 89
|
mpteq12dv |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ( 𝑥 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ↦ { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 } ) = ( 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ↦ { 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ∣ ¬ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 } ) ) |
| 91 |
90
|
rneqd |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ran ( 𝑥 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ↦ { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 } ) = ran ( 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ↦ { 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ∣ ¬ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 } ) ) |
| 92 |
|
inrab2 |
⊢ ( { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ∩ 𝐴 ) = { 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ∣ ¬ 𝑥 ≤ 𝑦 } |
| 93 |
|
brinxp |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ≤ 𝑦 ↔ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ) ) |
| 94 |
67 64 93
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ) ∧ 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ) → ( 𝑥 ≤ 𝑦 ↔ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ) ) |
| 95 |
94
|
notbid |
⊢ ( ( ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ) ∧ 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ) → ( ¬ 𝑥 ≤ 𝑦 ↔ ¬ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ) ) |
| 96 |
95
|
rabbidva |
⊢ ( ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ) → { 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ∣ ¬ 𝑥 ≤ 𝑦 } = { 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ∣ ¬ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 } ) |
| 97 |
92 96
|
eqtrid |
⊢ ( ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ) → ( { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ∩ 𝐴 ) = { 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ∣ ¬ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 } ) |
| 98 |
48
|
ordtopn2 |
⊢ ( ( ≤ ∈ V ∧ 𝑥 ∈ dom ≤ ) → { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ∈ ( ordTop ‘ ≤ ) ) |
| 99 |
5 98
|
mpan |
⊢ ( 𝑥 ∈ dom ≤ → { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ∈ ( ordTop ‘ ≤ ) ) |
| 100 |
99
|
adantl |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝑥 ∈ dom ≤ ) → { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ∈ ( ordTop ‘ ≤ ) ) |
| 101 |
75 77 100
|
syl2an |
⊢ ( ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ) → { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ∈ ( ordTop ‘ ≤ ) ) |
| 102 |
|
elrestr |
⊢ ( ( ( ordTop ‘ ≤ ) ∈ Top ∧ 𝐴 ∈ V ∧ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ∈ ( ordTop ‘ ≤ ) ) → ( { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ∩ 𝐴 ) ∈ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ) |
| 103 |
73 74 101 102
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ) → ( { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ∩ 𝐴 ) ∈ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ) |
| 104 |
97 103
|
eqeltrrd |
⊢ ( ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ) → { 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ∣ ¬ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 } ∈ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ) |
| 105 |
104
|
fmpttd |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ( 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ↦ { 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ∣ ¬ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 } ) : ( dom ≤ ∩ 𝐴 ) ⟶ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ) |
| 106 |
105
|
frnd |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ran ( 𝑥 ∈ ( dom ≤ ∩ 𝐴 ) ↦ { 𝑦 ∈ ( dom ≤ ∩ 𝐴 ) ∣ ¬ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 } ) ⊆ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ) |
| 107 |
91 106
|
eqsstrd |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ran ( 𝑥 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ↦ { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 } ) ⊆ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ) |
| 108 |
87 107
|
unssd |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ( ran ( 𝑥 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ↦ { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ↦ { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 } ) ) ⊆ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ) |
| 109 |
56 108
|
unssd |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ( { dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) } ∪ ( ran ( 𝑥 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ↦ { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ↦ { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 } ) ) ) ⊆ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ) |
| 110 |
|
tgfiss |
⊢ ( ( ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ∈ Top ∧ ( { dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) } ∪ ( ran ( 𝑥 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ↦ { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ↦ { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 } ) ) ) ⊆ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ) → ( topGen ‘ ( fi ‘ ( { dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) } ∪ ( ran ( 𝑥 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ↦ { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ↦ { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 } ) ) ) ) ) ⊆ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ) |
| 111 |
19 109 110
|
syl2anc |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ( topGen ‘ ( fi ‘ ( { dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) } ∪ ( ran ( 𝑥 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ↦ { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑦 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ↦ { 𝑦 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑥 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑦 } ) ) ) ) ) ⊆ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ) |
| 112 |
11 111
|
eqsstrd |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ) |