| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordtNEW.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | ordtNEW.l | ⊢  ≤   =  ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) ) | 
						
							| 3 |  | ordtrest2NEW.2 | ⊢ ( 𝜑  →  𝐾  ∈  Toset ) | 
						
							| 4 |  | ordtrest2NEW.3 | ⊢ ( 𝜑  →  𝐴  ⊆  𝐵 ) | 
						
							| 5 |  | ordtrest2NEW.4 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  { 𝑧  ∈  𝐵  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) }  ⊆  𝐴 ) | 
						
							| 6 |  | inrab2 | ⊢ ( { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  ∩  𝐴 )  =  { 𝑤  ∈  ( 𝐵  ∩  𝐴 )  ∣  ¬  𝑤  ≤  𝑧 } | 
						
							| 7 |  | sseqin2 | ⊢ ( 𝐴  ⊆  𝐵  ↔  ( 𝐵  ∩  𝐴 )  =  𝐴 ) | 
						
							| 8 | 4 7 | sylib | ⊢ ( 𝜑  →  ( 𝐵  ∩  𝐴 )  =  𝐴 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ( 𝐵  ∩  𝐴 )  =  𝐴 ) | 
						
							| 10 |  | rabeq | ⊢ ( ( 𝐵  ∩  𝐴 )  =  𝐴  →  { 𝑤  ∈  ( 𝐵  ∩  𝐴 )  ∣  ¬  𝑤  ≤  𝑧 }  =  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 } ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  { 𝑤  ∈  ( 𝐵  ∩  𝐴 )  ∣  ¬  𝑤  ≤  𝑧 }  =  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 } ) | 
						
							| 12 | 6 11 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ( { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  ∩  𝐴 )  =  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 } ) | 
						
							| 13 |  | fvex | ⊢ ( le ‘ 𝐾 )  ∈  V | 
						
							| 14 | 13 | inex1 | ⊢ ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) )  ∈  V | 
						
							| 15 | 2 14 | eqeltri | ⊢  ≤   ∈  V | 
						
							| 16 | 15 | inex1 | ⊢ (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∈  V | 
						
							| 17 | 16 | a1i | ⊢ ( 𝜑  →  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∈  V ) | 
						
							| 18 |  | eqid | ⊢ dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) | 
						
							| 19 | 18 | ordttopon | ⊢ ( (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∈  V  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∈  ( TopOn ‘ dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 20 | 17 19 | syl | ⊢ ( 𝜑  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∈  ( TopOn ‘ dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 21 |  | tospos | ⊢ ( 𝐾  ∈  Toset  →  𝐾  ∈  Poset ) | 
						
							| 22 |  | posprs | ⊢ ( 𝐾  ∈  Poset  →  𝐾  ∈   Proset  ) | 
						
							| 23 | 3 21 22 | 3syl | ⊢ ( 𝜑  →  𝐾  ∈   Proset  ) | 
						
							| 24 | 1 2 | prsssdm | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  𝐴 ) | 
						
							| 25 | 23 4 24 | syl2anc | ⊢ ( 𝜑  →  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  𝐴 ) | 
						
							| 26 | 25 | fveq2d | ⊢ ( 𝜑  →  ( TopOn ‘ dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  =  ( TopOn ‘ 𝐴 ) ) | 
						
							| 27 | 20 26 | eleqtrd | ⊢ ( 𝜑  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∈  ( TopOn ‘ 𝐴 ) ) | 
						
							| 28 |  | toponmax | ⊢ ( ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∈  ( TopOn ‘ 𝐴 )  →  𝐴  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( 𝜑  →  𝐴  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  𝐴  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 31 |  | rabid2 | ⊢ ( 𝐴  =  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ↔  ∀ 𝑤  ∈  𝐴 ¬  𝑤  ≤  𝑧 ) | 
						
							| 32 |  | eleq1 | ⊢ ( 𝐴  =  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  →  ( 𝐴  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ↔  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) ) | 
						
							| 33 | 31 32 | sylbir | ⊢ ( ∀ 𝑤  ∈  𝐴 ¬  𝑤  ≤  𝑧  →  ( 𝐴  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ↔  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) ) | 
						
							| 34 | 30 33 | syl5ibcom | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ( ∀ 𝑤  ∈  𝐴 ¬  𝑤  ≤  𝑧  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) ) | 
						
							| 35 |  | dfrex2 | ⊢ ( ∃ 𝑤  ∈  𝐴 𝑤  ≤  𝑧  ↔  ¬  ∀ 𝑤  ∈  𝐴 ¬  𝑤  ≤  𝑧 ) | 
						
							| 36 |  | breq1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤  ≤  𝑧  ↔  𝑥  ≤  𝑧 ) ) | 
						
							| 37 | 36 | cbvrexvw | ⊢ ( ∃ 𝑤  ∈  𝐴 𝑤  ≤  𝑧  ↔  ∃ 𝑥  ∈  𝐴 𝑥  ≤  𝑧 ) | 
						
							| 38 | 35 37 | bitr3i | ⊢ ( ¬  ∀ 𝑤  ∈  𝐴 ¬  𝑤  ≤  𝑧  ↔  ∃ 𝑥  ∈  𝐴 𝑥  ≤  𝑧 ) | 
						
							| 39 |  | ordttop | ⊢ ( (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∈  V  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∈  Top ) | 
						
							| 40 | 17 39 | syl | ⊢ ( 𝜑  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∈  Top ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∈  Top ) | 
						
							| 42 |  | 0opn | ⊢ ( ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∈  Top  →  ∅  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 43 | 41 42 | syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ∅  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  →  ∅  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 45 |  | eleq1 | ⊢ ( { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  =  ∅  →  ( { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ↔  ∅  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) ) | 
						
							| 46 | 44 45 | syl5ibrcom | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  →  ( { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  =  ∅  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) ) | 
						
							| 47 |  | rabn0 | ⊢ ( { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ≠  ∅  ↔  ∃ 𝑤  ∈  𝐴 ¬  𝑤  ≤  𝑧 ) | 
						
							| 48 |  | breq1 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑤  ≤  𝑧  ↔  𝑦  ≤  𝑧 ) ) | 
						
							| 49 | 48 | notbid | ⊢ ( 𝑤  =  𝑦  →  ( ¬  𝑤  ≤  𝑧  ↔  ¬  𝑦  ≤  𝑧 ) ) | 
						
							| 50 | 49 | cbvrexvw | ⊢ ( ∃ 𝑤  ∈  𝐴 ¬  𝑤  ≤  𝑧  ↔  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑧 ) | 
						
							| 51 | 47 50 | bitri | ⊢ ( { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ≠  ∅  ↔  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑧 ) | 
						
							| 52 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  ∧  𝑦  ∈  𝐴 )  →  𝐾  ∈  Toset ) | 
						
							| 53 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  →  𝐴  ⊆  𝐵 ) | 
						
							| 54 | 53 | sselda | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  𝐵 ) | 
						
							| 55 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐵 ) | 
						
							| 56 | 1 2 | trleile | ⊢ ( ( 𝐾  ∈  Toset  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( 𝑦  ≤  𝑧  ∨  𝑧  ≤  𝑦 ) ) | 
						
							| 57 | 52 54 55 56 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑦  ≤  𝑧  ∨  𝑧  ≤  𝑦 ) ) | 
						
							| 58 | 57 | ord | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  ∧  𝑦  ∈  𝐴 )  →  ( ¬  𝑦  ≤  𝑧  →  𝑧  ≤  𝑦 ) ) | 
						
							| 59 |  | an4 | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ≤  𝑦 ) )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) ) ) | 
						
							| 60 |  | rabss | ⊢ ( { 𝑧  ∈  𝐵  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) }  ⊆  𝐴  ↔  ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 )  →  𝑧  ∈  𝐴 ) ) | 
						
							| 61 | 5 60 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 )  →  𝑧  ∈  𝐴 ) ) | 
						
							| 62 | 61 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 )  →  𝑧  ∈  𝐴 ) ) | 
						
							| 63 | 62 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 )  →  𝑧  ∈  𝐴 ) ) | 
						
							| 64 | 63 | impr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) ) )  →  𝑧  ∈  𝐴 ) | 
						
							| 65 | 59 64 | sylan2b | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ≤  𝑦 ) ) )  →  𝑧  ∈  𝐴 ) | 
						
							| 66 |  | brinxp | ⊢ ( ( 𝑤  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  →  ( 𝑤  ≤  𝑧  ↔  𝑤 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 ) ) | 
						
							| 67 | 66 | ancoms | ⊢ ( ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐴 )  →  ( 𝑤  ≤  𝑧  ↔  𝑤 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 ) ) | 
						
							| 68 | 67 | notbid | ⊢ ( ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐴 )  →  ( ¬  𝑤  ≤  𝑧  ↔  ¬  𝑤 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 ) ) | 
						
							| 69 | 68 | rabbidva | ⊢ ( 𝑧  ∈  𝐴  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  =  { 𝑤  ∈  𝐴  ∣  ¬  𝑤 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 } ) | 
						
							| 70 | 65 69 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ≤  𝑦 ) ) )  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  =  { 𝑤  ∈  𝐴  ∣  ¬  𝑤 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 } ) | 
						
							| 71 | 25 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ≤  𝑦 ) ) )  →  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  𝐴 ) | 
						
							| 72 |  | rabeq | ⊢ ( dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  𝐴  →  { 𝑤  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑤 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 }  =  { 𝑤  ∈  𝐴  ∣  ¬  𝑤 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 } ) | 
						
							| 73 | 71 72 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ≤  𝑦 ) ) )  →  { 𝑤  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑤 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 }  =  { 𝑤  ∈  𝐴  ∣  ¬  𝑤 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 } ) | 
						
							| 74 | 70 73 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ≤  𝑦 ) ) )  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  =  { 𝑤  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑤 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 } ) | 
						
							| 75 | 16 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ≤  𝑦 ) ) )  →  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∈  V ) | 
						
							| 76 | 65 71 | eleqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ≤  𝑦 ) ) )  →  𝑧  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 77 | 18 | ordtopn1 | ⊢ ( ( (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∈  V  ∧  𝑧  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  →  { 𝑤  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑤 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 78 | 75 76 77 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ≤  𝑦 ) ) )  →  { 𝑤  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑤 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 79 | 74 78 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ≤  𝑦 ) ) )  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 80 | 79 | anassrs | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ≤  𝑦 ) )  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 81 | 80 | expr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑧  ≤  𝑦  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) ) | 
						
							| 82 | 58 81 | syld | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  ∧  𝑦  ∈  𝐴 )  →  ( ¬  𝑦  ≤  𝑧  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) ) | 
						
							| 83 | 82 | rexlimdva | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  →  ( ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑧  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) ) | 
						
							| 84 | 51 83 | biimtrid | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  →  ( { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ≠  ∅  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) ) | 
						
							| 85 | 46 84 | pm2.61dne | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 86 | 85 | rexlimdvaa | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ( ∃ 𝑥  ∈  𝐴 𝑥  ≤  𝑧  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) ) | 
						
							| 87 | 38 86 | biimtrid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ( ¬  ∀ 𝑤  ∈  𝐴 ¬  𝑤  ≤  𝑧  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) ) | 
						
							| 88 | 34 87 | pm2.61d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 89 | 12 88 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ( { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 90 | 89 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝐵 ( { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 91 |  | fvex | ⊢ ( Base ‘ 𝐾 )  ∈  V | 
						
							| 92 | 1 91 | eqeltri | ⊢ 𝐵  ∈  V | 
						
							| 93 | 92 | a1i | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 94 |  | rabexg | ⊢ ( 𝐵  ∈  V  →  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  ∈  V ) | 
						
							| 95 | 93 94 | syl | ⊢ ( 𝜑  →  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  ∈  V ) | 
						
							| 96 | 95 | ralrimivw | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝐵 { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  ∈  V ) | 
						
							| 97 |  | eqid | ⊢ ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  =  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } ) | 
						
							| 98 |  | ineq1 | ⊢ ( 𝑣  =  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  →  ( 𝑣  ∩  𝐴 )  =  ( { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  ∩  𝐴 ) ) | 
						
							| 99 | 98 | eleq1d | ⊢ ( 𝑣  =  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  →  ( ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ↔  ( { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) ) | 
						
							| 100 | 97 99 | ralrnmptw | ⊢ ( ∀ 𝑧  ∈  𝐵 { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  ∈  V  →  ( ∀ 𝑣  ∈  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } ) ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ↔  ∀ 𝑧  ∈  𝐵 ( { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) ) | 
						
							| 101 | 96 100 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑣  ∈  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } ) ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ↔  ∀ 𝑧  ∈  𝐵 ( { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) ) | 
						
							| 102 | 90 101 | mpbird | ⊢ ( 𝜑  →  ∀ 𝑣  ∈  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } ) ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) |