Step |
Hyp |
Ref |
Expression |
1 |
|
ordtNEW.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
ordtNEW.l |
⊢ ≤ = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) |
3 |
|
ordtrest2NEW.2 |
⊢ ( 𝜑 → 𝐾 ∈ Toset ) |
4 |
|
ordtrest2NEW.3 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
5 |
|
ordtrest2NEW.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → { 𝑧 ∈ 𝐵 ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ⊆ 𝐴 ) |
6 |
|
inrab2 |
⊢ ( { 𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧 } ∩ 𝐴 ) = { 𝑤 ∈ ( 𝐵 ∩ 𝐴 ) ∣ ¬ 𝑤 ≤ 𝑧 } |
7 |
|
sseqin2 |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐵 ∩ 𝐴 ) = 𝐴 ) |
8 |
4 7
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∩ 𝐴 ) = 𝐴 ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐵 ∩ 𝐴 ) = 𝐴 ) |
10 |
|
rabeq |
⊢ ( ( 𝐵 ∩ 𝐴 ) = 𝐴 → { 𝑤 ∈ ( 𝐵 ∩ 𝐴 ) ∣ ¬ 𝑤 ≤ 𝑧 } = { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } ) |
11 |
9 10
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → { 𝑤 ∈ ( 𝐵 ∩ 𝐴 ) ∣ ¬ 𝑤 ≤ 𝑧 } = { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } ) |
12 |
6 11
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( { 𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧 } ∩ 𝐴 ) = { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } ) |
13 |
|
fvex |
⊢ ( le ‘ 𝐾 ) ∈ V |
14 |
13
|
inex1 |
⊢ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ∈ V |
15 |
2 14
|
eqeltri |
⊢ ≤ ∈ V |
16 |
15
|
inex1 |
⊢ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∈ V |
17 |
16
|
a1i |
⊢ ( 𝜑 → ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∈ V ) |
18 |
|
eqid |
⊢ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) = dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) |
19 |
18
|
ordttopon |
⊢ ( ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∈ V → ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ∈ ( TopOn ‘ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) |
20 |
17 19
|
syl |
⊢ ( 𝜑 → ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ∈ ( TopOn ‘ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) |
21 |
|
tospos |
⊢ ( 𝐾 ∈ Toset → 𝐾 ∈ Poset ) |
22 |
|
posprs |
⊢ ( 𝐾 ∈ Poset → 𝐾 ∈ Proset ) |
23 |
3 21 22
|
3syl |
⊢ ( 𝜑 → 𝐾 ∈ Proset ) |
24 |
1 2
|
prsssdm |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵 ) → dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) = 𝐴 ) |
25 |
23 4 24
|
syl2anc |
⊢ ( 𝜑 → dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) = 𝐴 ) |
26 |
25
|
fveq2d |
⊢ ( 𝜑 → ( TopOn ‘ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) = ( TopOn ‘ 𝐴 ) ) |
27 |
20 26
|
eleqtrd |
⊢ ( 𝜑 → ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ∈ ( TopOn ‘ 𝐴 ) ) |
28 |
|
toponmax |
⊢ ( ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ∈ ( TopOn ‘ 𝐴 ) → 𝐴 ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) |
29 |
27 28
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝐴 ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) |
31 |
|
rabid2 |
⊢ ( 𝐴 = { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } ↔ ∀ 𝑤 ∈ 𝐴 ¬ 𝑤 ≤ 𝑧 ) |
32 |
|
eleq1 |
⊢ ( 𝐴 = { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } → ( 𝐴 ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ↔ { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
33 |
31 32
|
sylbir |
⊢ ( ∀ 𝑤 ∈ 𝐴 ¬ 𝑤 ≤ 𝑧 → ( 𝐴 ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ↔ { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
34 |
30 33
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ∀ 𝑤 ∈ 𝐴 ¬ 𝑤 ≤ 𝑧 → { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
35 |
|
dfrex2 |
⊢ ( ∃ 𝑤 ∈ 𝐴 𝑤 ≤ 𝑧 ↔ ¬ ∀ 𝑤 ∈ 𝐴 ¬ 𝑤 ≤ 𝑧 ) |
36 |
|
breq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ≤ 𝑧 ↔ 𝑥 ≤ 𝑧 ) ) |
37 |
36
|
cbvrexvw |
⊢ ( ∃ 𝑤 ∈ 𝐴 𝑤 ≤ 𝑧 ↔ ∃ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑧 ) |
38 |
35 37
|
bitr3i |
⊢ ( ¬ ∀ 𝑤 ∈ 𝐴 ¬ 𝑤 ≤ 𝑧 ↔ ∃ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑧 ) |
39 |
|
ordttop |
⊢ ( ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∈ V → ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ∈ Top ) |
40 |
17 39
|
syl |
⊢ ( 𝜑 → ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ∈ Top ) |
41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ∈ Top ) |
42 |
|
0opn |
⊢ ( ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ∈ Top → ∅ ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) |
43 |
41 42
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ∅ ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) |
44 |
43
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧 ) ) → ∅ ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) |
45 |
|
eleq1 |
⊢ ( { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } = ∅ → ( { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ∅ ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
46 |
44 45
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧 ) ) → ( { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } = ∅ → { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
47 |
|
rabn0 |
⊢ ( { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } ≠ ∅ ↔ ∃ 𝑤 ∈ 𝐴 ¬ 𝑤 ≤ 𝑧 ) |
48 |
|
breq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ≤ 𝑧 ↔ 𝑦 ≤ 𝑧 ) ) |
49 |
48
|
notbid |
⊢ ( 𝑤 = 𝑦 → ( ¬ 𝑤 ≤ 𝑧 ↔ ¬ 𝑦 ≤ 𝑧 ) ) |
50 |
49
|
cbvrexvw |
⊢ ( ∃ 𝑤 ∈ 𝐴 ¬ 𝑤 ≤ 𝑧 ↔ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑧 ) |
51 |
47 50
|
bitri |
⊢ ( { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } ≠ ∅ ↔ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑧 ) |
52 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝐾 ∈ Toset ) |
53 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧 ) ) → 𝐴 ⊆ 𝐵 ) |
54 |
53
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) |
55 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐵 ) |
56 |
1 2
|
trleile |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ≤ 𝑧 ∨ 𝑧 ≤ 𝑦 ) ) |
57 |
52 54 55 56
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧 ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ≤ 𝑧 ∨ 𝑧 ≤ 𝑦 ) ) |
58 |
57
|
ord |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧 ) ) ∧ 𝑦 ∈ 𝐴 ) → ( ¬ 𝑦 ≤ 𝑧 → 𝑧 ≤ 𝑦 ) ) |
59 |
|
an4 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ≤ 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) ) |
60 |
|
rabss |
⊢ ( { 𝑧 ∈ 𝐵 ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ⊆ 𝐴 ↔ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) → 𝑧 ∈ 𝐴 ) ) |
61 |
5 60
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) → 𝑧 ∈ 𝐴 ) ) |
62 |
61
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) → 𝑧 ∈ 𝐴 ) ) |
63 |
62
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) → 𝑧 ∈ 𝐴 ) ) |
64 |
63
|
impr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) ) → 𝑧 ∈ 𝐴 ) |
65 |
59 64
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ≤ 𝑦 ) ) ) → 𝑧 ∈ 𝐴 ) |
66 |
|
brinxp |
⊢ ( ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑤 ≤ 𝑧 ↔ 𝑤 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑧 ) ) |
67 |
66
|
ancoms |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑤 ≤ 𝑧 ↔ 𝑤 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑧 ) ) |
68 |
67
|
notbid |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( ¬ 𝑤 ≤ 𝑧 ↔ ¬ 𝑤 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑧 ) ) |
69 |
68
|
rabbidva |
⊢ ( 𝑧 ∈ 𝐴 → { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } = { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑧 } ) |
70 |
65 69
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ≤ 𝑦 ) ) ) → { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } = { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑧 } ) |
71 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ≤ 𝑦 ) ) ) → dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) = 𝐴 ) |
72 |
|
rabeq |
⊢ ( dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) = 𝐴 → { 𝑤 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑤 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑧 } = { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑧 } ) |
73 |
71 72
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ≤ 𝑦 ) ) ) → { 𝑤 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑤 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑧 } = { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑧 } ) |
74 |
70 73
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ≤ 𝑦 ) ) ) → { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } = { 𝑤 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑤 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑧 } ) |
75 |
16
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ≤ 𝑦 ) ) ) → ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∈ V ) |
76 |
65 71
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ≤ 𝑦 ) ) ) → 𝑧 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) |
77 |
18
|
ordtopn1 |
⊢ ( ( ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∈ V ∧ 𝑧 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) → { 𝑤 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑤 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑧 } ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) |
78 |
75 76 77
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ≤ 𝑦 ) ) ) → { 𝑤 ∈ dom ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ∣ ¬ 𝑤 ( ≤ ∩ ( 𝐴 × 𝐴 ) ) 𝑧 } ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) |
79 |
74 78
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ≤ 𝑦 ) ) ) → { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) |
80 |
79
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ≤ 𝑦 ) ) → { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) |
81 |
80
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧 ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑧 ≤ 𝑦 → { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
82 |
58 81
|
syld |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧 ) ) ∧ 𝑦 ∈ 𝐴 ) → ( ¬ 𝑦 ≤ 𝑧 → { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
83 |
82
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧 ) ) → ( ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑧 → { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
84 |
51 83
|
syl5bi |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧 ) ) → ( { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } ≠ ∅ → { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
85 |
46 84
|
pm2.61dne |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑧 ) ) → { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) |
86 |
85
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ∃ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑧 → { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
87 |
38 86
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ¬ ∀ 𝑤 ∈ 𝐴 ¬ 𝑤 ≤ 𝑧 → { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
88 |
34 87
|
pm2.61d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → { 𝑤 ∈ 𝐴 ∣ ¬ 𝑤 ≤ 𝑧 } ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) |
89 |
12 88
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( { 𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧 } ∩ 𝐴 ) ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) |
90 |
89
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ( { 𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧 } ∩ 𝐴 ) ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) |
91 |
|
fvex |
⊢ ( Base ‘ 𝐾 ) ∈ V |
92 |
1 91
|
eqeltri |
⊢ 𝐵 ∈ V |
93 |
92
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
94 |
|
rabexg |
⊢ ( 𝐵 ∈ V → { 𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧 } ∈ V ) |
95 |
93 94
|
syl |
⊢ ( 𝜑 → { 𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧 } ∈ V ) |
96 |
95
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 { 𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧 } ∈ V ) |
97 |
|
eqid |
⊢ ( 𝑧 ∈ 𝐵 ↦ { 𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧 } ) = ( 𝑧 ∈ 𝐵 ↦ { 𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧 } ) |
98 |
|
ineq1 |
⊢ ( 𝑣 = { 𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧 } → ( 𝑣 ∩ 𝐴 ) = ( { 𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧 } ∩ 𝐴 ) ) |
99 |
98
|
eleq1d |
⊢ ( 𝑣 = { 𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧 } → ( ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ( { 𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧 } ∩ 𝐴 ) ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
100 |
97 99
|
ralrnmptw |
⊢ ( ∀ 𝑧 ∈ 𝐵 { 𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧 } ∈ V → ( ∀ 𝑣 ∈ ran ( 𝑧 ∈ 𝐵 ↦ { 𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧 } ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( { 𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧 } ∩ 𝐴 ) ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
101 |
96 100
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑣 ∈ ran ( 𝑧 ∈ 𝐵 ↦ { 𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧 } ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( { 𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧 } ∩ 𝐴 ) ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
102 |
90 101
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑣 ∈ ran ( 𝑧 ∈ 𝐵 ↦ { 𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧 } ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( ≤ ∩ ( 𝐴 × 𝐴 ) ) ) ) |