| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordtNEW.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | ordtNEW.l | ⊢  ≤   =  ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) ) | 
						
							| 3 |  | ordtrest2NEW.2 | ⊢ ( 𝜑  →  𝐾  ∈  Toset ) | 
						
							| 4 |  | ordtrest2NEW.3 | ⊢ ( 𝜑  →  𝐴  ⊆  𝐵 ) | 
						
							| 5 |  | ordtrest2NEW.4 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  { 𝑧  ∈  𝐵  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) }  ⊆  𝐴 ) | 
						
							| 6 |  | tospos | ⊢ ( 𝐾  ∈  Toset  →  𝐾  ∈  Poset ) | 
						
							| 7 |  | posprs | ⊢ ( 𝐾  ∈  Poset  →  𝐾  ∈   Proset  ) | 
						
							| 8 | 3 6 7 | 3syl | ⊢ ( 𝜑  →  𝐾  ∈   Proset  ) | 
						
							| 9 | 1 2 | ordtrestNEW | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ⊆  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) ) | 
						
							| 10 | 8 4 9 | syl2anc | ⊢ ( 𝜑  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ⊆  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) ) | 
						
							| 11 |  | eqid | ⊢ ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  =  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } ) | 
						
							| 12 |  | eqid | ⊢ ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } )  =  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) | 
						
							| 13 | 1 2 11 12 | ordtprsval | ⊢ ( 𝐾  ∈   Proset   →  ( ordTop ‘  ≤  )  =  ( topGen ‘ ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) ) ) ) ) | 
						
							| 14 | 8 13 | syl | ⊢ ( 𝜑  →  ( ordTop ‘  ≤  )  =  ( topGen ‘ ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) ) ) ) ) | 
						
							| 15 | 14 | oveq1d | ⊢ ( 𝜑  →  ( ( ordTop ‘  ≤  )  ↾t  𝐴 )  =  ( ( topGen ‘ ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) ) ) )  ↾t  𝐴 ) ) | 
						
							| 16 |  | fibas | ⊢ ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) ) )  ∈  TopBases | 
						
							| 17 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 18 | 17 | a1i | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 19 | 18 4 | ssexd | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 20 |  | tgrest | ⊢ ( ( ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) ) )  ∈  TopBases  ∧  𝐴  ∈  V )  →  ( topGen ‘ ( ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) ) )  ↾t  𝐴 ) )  =  ( ( topGen ‘ ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) ) ) )  ↾t  𝐴 ) ) | 
						
							| 21 | 16 19 20 | sylancr | ⊢ ( 𝜑  →  ( topGen ‘ ( ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) ) )  ↾t  𝐴 ) )  =  ( ( topGen ‘ ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) ) ) )  ↾t  𝐴 ) ) | 
						
							| 22 | 15 21 | eqtr4d | ⊢ ( 𝜑  →  ( ( ordTop ‘  ≤  )  ↾t  𝐴 )  =  ( topGen ‘ ( ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) ) )  ↾t  𝐴 ) ) ) | 
						
							| 23 |  | firest | ⊢ ( fi ‘ ( ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) )  ↾t  𝐴 ) )  =  ( ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) ) )  ↾t  𝐴 ) | 
						
							| 24 | 23 | fveq2i | ⊢ ( topGen ‘ ( fi ‘ ( ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) )  ↾t  𝐴 ) ) )  =  ( topGen ‘ ( ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) ) )  ↾t  𝐴 ) ) | 
						
							| 25 | 22 24 | eqtr4di | ⊢ ( 𝜑  →  ( ( ordTop ‘  ≤  )  ↾t  𝐴 )  =  ( topGen ‘ ( fi ‘ ( ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) )  ↾t  𝐴 ) ) ) ) | 
						
							| 26 |  | fvex | ⊢ ( le ‘ 𝐾 )  ∈  V | 
						
							| 27 | 26 | inex1 | ⊢ ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) )  ∈  V | 
						
							| 28 | 2 27 | eqeltri | ⊢  ≤   ∈  V | 
						
							| 29 | 28 | inex1 | ⊢ (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∈  V | 
						
							| 30 |  | ordttop | ⊢ ( (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∈  V  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∈  Top ) | 
						
							| 31 | 29 30 | mp1i | ⊢ ( 𝜑  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∈  Top ) | 
						
							| 32 | 1 2 11 12 | ordtprsuni | ⊢ ( 𝐾  ∈   Proset   →  𝐵  =  ∪  ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) ) ) | 
						
							| 33 | 8 32 | syl | ⊢ ( 𝜑  →  𝐵  =  ∪  ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) ) ) | 
						
							| 34 | 33 18 | eqeltrrd | ⊢ ( 𝜑  →  ∪  ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) )  ∈  V ) | 
						
							| 35 |  | uniexb | ⊢ ( ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) )  ∈  V  ↔  ∪  ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) )  ∈  V ) | 
						
							| 36 | 34 35 | sylibr | ⊢ ( 𝜑  →  ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) )  ∈  V ) | 
						
							| 37 |  | restval | ⊢ ( ( ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) )  ∈  V  ∧  𝐴  ∈  V )  →  ( ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) )  ↾t  𝐴 )  =  ran  ( 𝑣  ∈  ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) )  ↦  ( 𝑣  ∩  𝐴 ) ) ) | 
						
							| 38 | 36 19 37 | syl2anc | ⊢ ( 𝜑  →  ( ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) )  ↾t  𝐴 )  =  ran  ( 𝑣  ∈  ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) )  ↦  ( 𝑣  ∩  𝐴 ) ) ) | 
						
							| 39 |  | sseqin2 | ⊢ ( 𝐴  ⊆  𝐵  ↔  ( 𝐵  ∩  𝐴 )  =  𝐴 ) | 
						
							| 40 | 4 39 | sylib | ⊢ ( 𝜑  →  ( 𝐵  ∩  𝐴 )  =  𝐴 ) | 
						
							| 41 |  | eqid | ⊢ dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) | 
						
							| 42 | 41 | ordttopon | ⊢ ( (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∈  V  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∈  ( TopOn ‘ dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 43 | 29 42 | mp1i | ⊢ ( 𝜑  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∈  ( TopOn ‘ dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 44 | 1 2 | prsssdm | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  𝐴 ) | 
						
							| 45 | 8 4 44 | syl2anc | ⊢ ( 𝜑  →  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  𝐴 ) | 
						
							| 46 | 45 | fveq2d | ⊢ ( 𝜑  →  ( TopOn ‘ dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  =  ( TopOn ‘ 𝐴 ) ) | 
						
							| 47 | 43 46 | eleqtrd | ⊢ ( 𝜑  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∈  ( TopOn ‘ 𝐴 ) ) | 
						
							| 48 |  | toponmax | ⊢ ( ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∈  ( TopOn ‘ 𝐴 )  →  𝐴  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 49 | 47 48 | syl | ⊢ ( 𝜑  →  𝐴  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 50 | 40 49 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐵  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 51 |  | elsni | ⊢ ( 𝑣  ∈  { 𝐵 }  →  𝑣  =  𝐵 ) | 
						
							| 52 | 51 | ineq1d | ⊢ ( 𝑣  ∈  { 𝐵 }  →  ( 𝑣  ∩  𝐴 )  =  ( 𝐵  ∩  𝐴 ) ) | 
						
							| 53 | 52 | eleq1d | ⊢ ( 𝑣  ∈  { 𝐵 }  →  ( ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ↔  ( 𝐵  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) ) | 
						
							| 54 | 50 53 | syl5ibrcom | ⊢ ( 𝜑  →  ( 𝑣  ∈  { 𝐵 }  →  ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) ) | 
						
							| 55 | 54 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑣  ∈  { 𝐵 } ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 56 | 1 2 3 4 5 | ordtrest2NEWlem | ⊢ ( 𝜑  →  ∀ 𝑣  ∈  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } ) ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 57 |  | eqid | ⊢ ( ODual ‘ 𝐾 )  =  ( ODual ‘ 𝐾 ) | 
						
							| 58 | 57 1 | odubas | ⊢ 𝐵  =  ( Base ‘ ( ODual ‘ 𝐾 ) ) | 
						
							| 59 | 2 | cnveqi | ⊢ ◡  ≤   =  ◡ ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) ) | 
						
							| 60 |  | cnvin | ⊢ ◡ ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) )  =  ( ◡ ( le ‘ 𝐾 )  ∩  ◡ ( 𝐵  ×  𝐵 ) ) | 
						
							| 61 |  | cnvxp | ⊢ ◡ ( 𝐵  ×  𝐵 )  =  ( 𝐵  ×  𝐵 ) | 
						
							| 62 | 61 | ineq2i | ⊢ ( ◡ ( le ‘ 𝐾 )  ∩  ◡ ( 𝐵  ×  𝐵 ) )  =  ( ◡ ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) ) | 
						
							| 63 |  | eqid | ⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 ) | 
						
							| 64 | 57 63 | oduleval | ⊢ ◡ ( le ‘ 𝐾 )  =  ( le ‘ ( ODual ‘ 𝐾 ) ) | 
						
							| 65 | 64 | ineq1i | ⊢ ( ◡ ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) )  =  ( ( le ‘ ( ODual ‘ 𝐾 ) )  ∩  ( 𝐵  ×  𝐵 ) ) | 
						
							| 66 | 60 62 65 | 3eqtri | ⊢ ◡ ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) )  =  ( ( le ‘ ( ODual ‘ 𝐾 ) )  ∩  ( 𝐵  ×  𝐵 ) ) | 
						
							| 67 | 59 66 | eqtri | ⊢ ◡  ≤   =  ( ( le ‘ ( ODual ‘ 𝐾 ) )  ∩  ( 𝐵  ×  𝐵 ) ) | 
						
							| 68 | 57 | odutos | ⊢ ( 𝐾  ∈  Toset  →  ( ODual ‘ 𝐾 )  ∈  Toset ) | 
						
							| 69 | 3 68 | syl | ⊢ ( 𝜑  →  ( ODual ‘ 𝐾 )  ∈  Toset ) | 
						
							| 70 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 71 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 72 | 70 71 | brcnv | ⊢ ( 𝑦 ◡  ≤  𝑧  ↔  𝑧  ≤  𝑦 ) | 
						
							| 73 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 74 | 71 73 | brcnv | ⊢ ( 𝑧 ◡  ≤  𝑥  ↔  𝑥  ≤  𝑧 ) | 
						
							| 75 | 72 74 | anbi12ci | ⊢ ( ( 𝑦 ◡  ≤  𝑧  ∧  𝑧 ◡  ≤  𝑥 )  ↔  ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) ) | 
						
							| 76 | 75 | rabbii | ⊢ { 𝑧  ∈  𝐵  ∣  ( 𝑦 ◡  ≤  𝑧  ∧  𝑧 ◡  ≤  𝑥 ) }  =  { 𝑧  ∈  𝐵  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) } | 
						
							| 77 | 76 5 | eqsstrid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  { 𝑧  ∈  𝐵  ∣  ( 𝑦 ◡  ≤  𝑧  ∧  𝑧 ◡  ≤  𝑥 ) }  ⊆  𝐴 ) | 
						
							| 78 | 77 | ancom2s | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  →  { 𝑧  ∈  𝐵  ∣  ( 𝑦 ◡  ≤  𝑧  ∧  𝑧 ◡  ≤  𝑥 ) }  ⊆  𝐴 ) | 
						
							| 79 | 58 67 69 4 78 | ordtrest2NEWlem | ⊢ ( 𝜑  →  ∀ 𝑣  ∈  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤 ◡  ≤  𝑧 } ) ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 80 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 81 | 80 71 | brcnv | ⊢ ( 𝑤 ◡  ≤  𝑧  ↔  𝑧  ≤  𝑤 ) | 
						
							| 82 | 81 | bicomi | ⊢ ( 𝑧  ≤  𝑤  ↔  𝑤 ◡  ≤  𝑧 ) | 
						
							| 83 | 82 | a1i | ⊢ ( 𝜑  →  ( 𝑧  ≤  𝑤  ↔  𝑤 ◡  ≤  𝑧 ) ) | 
						
							| 84 | 83 | notbid | ⊢ ( 𝜑  →  ( ¬  𝑧  ≤  𝑤  ↔  ¬  𝑤 ◡  ≤  𝑧 ) ) | 
						
							| 85 | 84 | rabbidv | ⊢ ( 𝜑  →  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 }  =  { 𝑤  ∈  𝐵  ∣  ¬  𝑤 ◡  ≤  𝑧 } ) | 
						
							| 86 | 85 | mpteq2dv | ⊢ ( 𝜑  →  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } )  =  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤 ◡  ≤  𝑧 } ) ) | 
						
							| 87 | 86 | rneqd | ⊢ ( 𝜑  →  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } )  =  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤 ◡  ≤  𝑧 } ) ) | 
						
							| 88 | 1 | ressprs | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( 𝐾  ↾s  𝐴 )  ∈   Proset  ) | 
						
							| 89 | 8 4 88 | syl2anc | ⊢ ( 𝜑  →  ( 𝐾  ↾s  𝐴 )  ∈   Proset  ) | 
						
							| 90 |  | eqid | ⊢ ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  =  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) | 
						
							| 91 |  | eqid | ⊢ ( ( le ‘ ( 𝐾  ↾s  𝐴 ) )  ∩  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) )  =  ( ( le ‘ ( 𝐾  ↾s  𝐴 ) )  ∩  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) ) | 
						
							| 92 | 90 91 | ordtcnvNEW | ⊢ ( ( 𝐾  ↾s  𝐴 )  ∈   Proset   →  ( ordTop ‘ ◡ ( ( le ‘ ( 𝐾  ↾s  𝐴 ) )  ∩  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) ) )  =  ( ordTop ‘ ( ( le ‘ ( 𝐾  ↾s  𝐴 ) )  ∩  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) ) ) ) | 
						
							| 93 | 89 92 | syl | ⊢ ( 𝜑  →  ( ordTop ‘ ◡ ( ( le ‘ ( 𝐾  ↾s  𝐴 ) )  ∩  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) ) )  =  ( ordTop ‘ ( ( le ‘ ( 𝐾  ↾s  𝐴 ) )  ∩  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) ) ) ) | 
						
							| 94 | 1 2 | prsss | ⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  ( ( le ‘ 𝐾 )  ∩  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 95 | 8 4 94 | syl2anc | ⊢ ( 𝜑  →  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  ( ( le ‘ 𝐾 )  ∩  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 96 |  | eqid | ⊢ ( 𝐾  ↾s  𝐴 )  =  ( 𝐾  ↾s  𝐴 ) | 
						
							| 97 | 96 63 | ressle | ⊢ ( 𝐴  ∈  V  →  ( le ‘ 𝐾 )  =  ( le ‘ ( 𝐾  ↾s  𝐴 ) ) ) | 
						
							| 98 | 19 97 | syl | ⊢ ( 𝜑  →  ( le ‘ 𝐾 )  =  ( le ‘ ( 𝐾  ↾s  𝐴 ) ) ) | 
						
							| 99 | 96 1 | ressbas2 | ⊢ ( 𝐴  ⊆  𝐵  →  𝐴  =  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) | 
						
							| 100 | 4 99 | syl | ⊢ ( 𝜑  →  𝐴  =  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) | 
						
							| 101 | 100 | sqxpeqd | ⊢ ( 𝜑  →  ( 𝐴  ×  𝐴 )  =  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) ) | 
						
							| 102 | 98 101 | ineq12d | ⊢ ( 𝜑  →  ( ( le ‘ 𝐾 )  ∩  ( 𝐴  ×  𝐴 ) )  =  ( ( le ‘ ( 𝐾  ↾s  𝐴 ) )  ∩  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) ) ) | 
						
							| 103 | 95 102 | eqtrd | ⊢ ( 𝜑  →  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  ( ( le ‘ ( 𝐾  ↾s  𝐴 ) )  ∩  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) ) ) | 
						
							| 104 | 103 | cnveqd | ⊢ ( 𝜑  →  ◡ (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  ◡ ( ( le ‘ ( 𝐾  ↾s  𝐴 ) )  ∩  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) ) ) | 
						
							| 105 | 104 | fveq2d | ⊢ ( 𝜑  →  ( ordTop ‘ ◡ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  =  ( ordTop ‘ ◡ ( ( le ‘ ( 𝐾  ↾s  𝐴 ) )  ∩  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) ) ) ) | 
						
							| 106 | 103 | fveq2d | ⊢ ( 𝜑  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  =  ( ordTop ‘ ( ( le ‘ ( 𝐾  ↾s  𝐴 ) )  ∩  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) ) ) ) | 
						
							| 107 | 93 105 106 | 3eqtr4d | ⊢ ( 𝜑  →  ( ordTop ‘ ◡ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  =  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 108 |  | cnvin | ⊢ ◡ (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  ( ◡  ≤   ∩  ◡ ( 𝐴  ×  𝐴 ) ) | 
						
							| 109 |  | cnvxp | ⊢ ◡ ( 𝐴  ×  𝐴 )  =  ( 𝐴  ×  𝐴 ) | 
						
							| 110 | 109 | ineq2i | ⊢ ( ◡  ≤   ∩  ◡ ( 𝐴  ×  𝐴 ) )  =  ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) ) | 
						
							| 111 | 108 110 | eqtri | ⊢ ◡ (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) ) | 
						
							| 112 | 111 | fveq2i | ⊢ ( ordTop ‘ ◡ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  =  ( ordTop ‘ ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 113 | 107 112 | eqtr3di | ⊢ ( 𝜑  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  =  ( ordTop ‘ ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 114 | 113 | eleq2d | ⊢ ( 𝜑  →  ( ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ↔  ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) ) | 
						
							| 115 | 87 114 | raleqbidv | ⊢ ( 𝜑  →  ( ∀ 𝑣  ∈  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ↔  ∀ 𝑣  ∈  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤 ◡  ≤  𝑧 } ) ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) ) | 
						
							| 116 | 79 115 | mpbird | ⊢ ( 𝜑  →  ∀ 𝑣  ∈  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 117 |  | ralunb | ⊢ ( ∀ 𝑣  ∈  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ↔  ( ∀ 𝑣  ∈  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } ) ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∧  ∀ 𝑣  ∈  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) ) | 
						
							| 118 | 56 116 117 | sylanbrc | ⊢ ( 𝜑  →  ∀ 𝑣  ∈  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 119 |  | ralunb | ⊢ ( ∀ 𝑣  ∈  ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) ) ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ↔  ( ∀ 𝑣  ∈  { 𝐵 } ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∧  ∀ 𝑣  ∈  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) ) | 
						
							| 120 | 55 118 119 | sylanbrc | ⊢ ( 𝜑  →  ∀ 𝑣  ∈  ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) ) ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 121 |  | eqid | ⊢ ( 𝑣  ∈  ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) )  ↦  ( 𝑣  ∩  𝐴 ) )  =  ( 𝑣  ∈  ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) )  ↦  ( 𝑣  ∩  𝐴 ) ) | 
						
							| 122 | 121 | fmpt | ⊢ ( ∀ 𝑣  ∈  ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) ) ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ↔  ( 𝑣  ∈  ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) )  ↦  ( 𝑣  ∩  𝐴 ) ) : ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) ) ⟶ ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 123 | 120 122 | sylib | ⊢ ( 𝜑  →  ( 𝑣  ∈  ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) )  ↦  ( 𝑣  ∩  𝐴 ) ) : ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) ) ⟶ ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 124 | 123 | frnd | ⊢ ( 𝜑  →  ran  ( 𝑣  ∈  ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) )  ↦  ( 𝑣  ∩  𝐴 ) )  ⊆  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 125 | 38 124 | eqsstrd | ⊢ ( 𝜑  →  ( ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) )  ↾t  𝐴 )  ⊆  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 126 |  | tgfiss | ⊢ ( ( ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∈  Top  ∧  ( ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) )  ↾t  𝐴 )  ⊆  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) )  →  ( topGen ‘ ( fi ‘ ( ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) )  ↾t  𝐴 ) ) )  ⊆  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 127 | 31 125 126 | syl2anc | ⊢ ( 𝜑  →  ( topGen ‘ ( fi ‘ ( ( { 𝐵 }  ∪  ( ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  ∪  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑤 } ) ) )  ↾t  𝐴 ) ) )  ⊆  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 128 | 25 127 | eqsstrd | ⊢ ( 𝜑  →  ( ( ordTop ‘  ≤  )  ↾t  𝐴 )  ⊆  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 129 | 10 128 | eqssd | ⊢ ( 𝜑  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  =  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) ) |