Metamath Proof Explorer


Theorem ordtrest2NEW

Description: An interval-closed set A in a total order has the same subspace topology as the restricted order topology. (An interval-closed set is the same thing as an open or half-open or closed interval in RR , but in other sets like QQ there are interval-closed sets like ( _pi , +oo ) i^i QQ that are not intervals.) (Contributed by Mario Carneiro, 9-Sep-2015) (Revised by Thierry Arnoux, 11-Sep-2018)

Ref Expression
Hypotheses ordtNEW.b 𝐵 = ( Base ‘ 𝐾 )
ordtNEW.l = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) )
ordtrest2NEW.2 ( 𝜑𝐾 ∈ Toset )
ordtrest2NEW.3 ( 𝜑𝐴𝐵 )
ordtrest2NEW.4 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → { 𝑧𝐵 ∣ ( 𝑥 𝑧𝑧 𝑦 ) } ⊆ 𝐴 )
Assertion ordtrest2NEW ( 𝜑 → ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) = ( ( ordTop ‘ ) ↾t 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ordtNEW.b 𝐵 = ( Base ‘ 𝐾 )
2 ordtNEW.l = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) )
3 ordtrest2NEW.2 ( 𝜑𝐾 ∈ Toset )
4 ordtrest2NEW.3 ( 𝜑𝐴𝐵 )
5 ordtrest2NEW.4 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → { 𝑧𝐵 ∣ ( 𝑥 𝑧𝑧 𝑦 ) } ⊆ 𝐴 )
6 tospos ( 𝐾 ∈ Toset → 𝐾 ∈ Poset )
7 posprs ( 𝐾 ∈ Poset → 𝐾 ∈ Proset )
8 3 6 7 3syl ( 𝜑𝐾 ∈ Proset )
9 1 2 ordtrestNEW ( ( 𝐾 ∈ Proset ∧ 𝐴𝐵 ) → ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ( ordTop ‘ ) ↾t 𝐴 ) )
10 8 4 9 syl2anc ( 𝜑 → ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ( ordTop ‘ ) ↾t 𝐴 ) )
11 eqid ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) = ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } )
12 eqid ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) = ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } )
13 1 2 11 12 ordtprsval ( 𝐾 ∈ Proset → ( ordTop ‘ ) = ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ) ) )
14 8 13 syl ( 𝜑 → ( ordTop ‘ ) = ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ) ) )
15 14 oveq1d ( 𝜑 → ( ( ordTop ‘ ) ↾t 𝐴 ) = ( ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ) ) ↾t 𝐴 ) )
16 fibas ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ) ∈ TopBases
17 1 fvexi 𝐵 ∈ V
18 17 a1i ( 𝜑𝐵 ∈ V )
19 18 4 ssexd ( 𝜑𝐴 ∈ V )
20 tgrest ( ( ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ) ∈ TopBases ∧ 𝐴 ∈ V ) → ( topGen ‘ ( ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ) ↾t 𝐴 ) ) = ( ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ) ) ↾t 𝐴 ) )
21 16 19 20 sylancr ( 𝜑 → ( topGen ‘ ( ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ) ↾t 𝐴 ) ) = ( ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ) ) ↾t 𝐴 ) )
22 15 21 eqtr4d ( 𝜑 → ( ( ordTop ‘ ) ↾t 𝐴 ) = ( topGen ‘ ( ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ) ↾t 𝐴 ) ) )
23 firest ( fi ‘ ( ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ↾t 𝐴 ) ) = ( ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ) ↾t 𝐴 )
24 23 fveq2i ( topGen ‘ ( fi ‘ ( ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ↾t 𝐴 ) ) ) = ( topGen ‘ ( ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ) ↾t 𝐴 ) )
25 22 24 eqtr4di ( 𝜑 → ( ( ordTop ‘ ) ↾t 𝐴 ) = ( topGen ‘ ( fi ‘ ( ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ↾t 𝐴 ) ) ) )
26 fvex ( le ‘ 𝐾 ) ∈ V
27 26 inex1 ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ∈ V
28 2 27 eqeltri ∈ V
29 28 inex1 ( ∩ ( 𝐴 × 𝐴 ) ) ∈ V
30 ordttop ( ( ∩ ( 𝐴 × 𝐴 ) ) ∈ V → ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) ∈ Top )
31 29 30 mp1i ( 𝜑 → ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) ∈ Top )
32 1 2 11 12 ordtprsuni ( 𝐾 ∈ Proset → 𝐵 = ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) )
33 8 32 syl ( 𝜑𝐵 = ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) )
34 33 18 eqeltrrd ( 𝜑 ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ∈ V )
35 uniexb ( ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ∈ V ↔ ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ∈ V )
36 34 35 sylibr ( 𝜑 → ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ∈ V )
37 restval ( ( ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ∈ V ∧ 𝐴 ∈ V ) → ( ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ↾t 𝐴 ) = ran ( 𝑣 ∈ ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ↦ ( 𝑣𝐴 ) ) )
38 36 19 37 syl2anc ( 𝜑 → ( ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ↾t 𝐴 ) = ran ( 𝑣 ∈ ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ↦ ( 𝑣𝐴 ) ) )
39 sseqin2 ( 𝐴𝐵 ↔ ( 𝐵𝐴 ) = 𝐴 )
40 4 39 sylib ( 𝜑 → ( 𝐵𝐴 ) = 𝐴 )
41 eqid dom ( ∩ ( 𝐴 × 𝐴 ) ) = dom ( ∩ ( 𝐴 × 𝐴 ) )
42 41 ordttopon ( ( ∩ ( 𝐴 × 𝐴 ) ) ∈ V → ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) ∈ ( TopOn ‘ dom ( ∩ ( 𝐴 × 𝐴 ) ) ) )
43 29 42 mp1i ( 𝜑 → ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) ∈ ( TopOn ‘ dom ( ∩ ( 𝐴 × 𝐴 ) ) ) )
44 1 2 prsssdm ( ( 𝐾 ∈ Proset ∧ 𝐴𝐵 ) → dom ( ∩ ( 𝐴 × 𝐴 ) ) = 𝐴 )
45 8 4 44 syl2anc ( 𝜑 → dom ( ∩ ( 𝐴 × 𝐴 ) ) = 𝐴 )
46 45 fveq2d ( 𝜑 → ( TopOn ‘ dom ( ∩ ( 𝐴 × 𝐴 ) ) ) = ( TopOn ‘ 𝐴 ) )
47 43 46 eleqtrd ( 𝜑 → ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) ∈ ( TopOn ‘ 𝐴 ) )
48 toponmax ( ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) ∈ ( TopOn ‘ 𝐴 ) → 𝐴 ∈ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) )
49 47 48 syl ( 𝜑𝐴 ∈ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) )
50 40 49 eqeltrd ( 𝜑 → ( 𝐵𝐴 ) ∈ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) )
51 elsni ( 𝑣 ∈ { 𝐵 } → 𝑣 = 𝐵 )
52 51 ineq1d ( 𝑣 ∈ { 𝐵 } → ( 𝑣𝐴 ) = ( 𝐵𝐴 ) )
53 52 eleq1d ( 𝑣 ∈ { 𝐵 } → ( ( 𝑣𝐴 ) ∈ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ( 𝐵𝐴 ) ∈ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) ) )
54 50 53 syl5ibrcom ( 𝜑 → ( 𝑣 ∈ { 𝐵 } → ( 𝑣𝐴 ) ∈ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) ) )
55 54 ralrimiv ( 𝜑 → ∀ 𝑣 ∈ { 𝐵 } ( 𝑣𝐴 ) ∈ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) )
56 1 2 3 4 5 ordtrest2NEWlem ( 𝜑 → ∀ 𝑣 ∈ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ( 𝑣𝐴 ) ∈ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) )
57 eqid ( ODual ‘ 𝐾 ) = ( ODual ‘ 𝐾 )
58 57 1 odubas 𝐵 = ( Base ‘ ( ODual ‘ 𝐾 ) )
59 2 cnveqi = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) )
60 cnvin ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) )
61 cnvxp ( 𝐵 × 𝐵 ) = ( 𝐵 × 𝐵 )
62 61 ineq2i ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) )
63 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
64 57 63 oduleval ( le ‘ 𝐾 ) = ( le ‘ ( ODual ‘ 𝐾 ) )
65 64 ineq1i ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) = ( ( le ‘ ( ODual ‘ 𝐾 ) ) ∩ ( 𝐵 × 𝐵 ) )
66 60 62 65 3eqtri ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) = ( ( le ‘ ( ODual ‘ 𝐾 ) ) ∩ ( 𝐵 × 𝐵 ) )
67 59 66 eqtri = ( ( le ‘ ( ODual ‘ 𝐾 ) ) ∩ ( 𝐵 × 𝐵 ) )
68 57 odutos ( 𝐾 ∈ Toset → ( ODual ‘ 𝐾 ) ∈ Toset )
69 3 68 syl ( 𝜑 → ( ODual ‘ 𝐾 ) ∈ Toset )
70 vex 𝑦 ∈ V
71 vex 𝑧 ∈ V
72 70 71 brcnv ( 𝑦 𝑧𝑧 𝑦 )
73 vex 𝑥 ∈ V
74 71 73 brcnv ( 𝑧 𝑥𝑥 𝑧 )
75 72 74 anbi12ci ( ( 𝑦 𝑧𝑧 𝑥 ) ↔ ( 𝑥 𝑧𝑧 𝑦 ) )
76 75 rabbii { 𝑧𝐵 ∣ ( 𝑦 𝑧𝑧 𝑥 ) } = { 𝑧𝐵 ∣ ( 𝑥 𝑧𝑧 𝑦 ) }
77 76 5 eqsstrid ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → { 𝑧𝐵 ∣ ( 𝑦 𝑧𝑧 𝑥 ) } ⊆ 𝐴 )
78 77 ancom2s ( ( 𝜑 ∧ ( 𝑦𝐴𝑥𝐴 ) ) → { 𝑧𝐵 ∣ ( 𝑦 𝑧𝑧 𝑥 ) } ⊆ 𝐴 )
79 58 67 69 4 78 ordtrest2NEWlem ( 𝜑 → ∀ 𝑣 ∈ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ( 𝑣𝐴 ) ∈ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) )
80 vex 𝑤 ∈ V
81 80 71 brcnv ( 𝑤 𝑧𝑧 𝑤 )
82 81 bicomi ( 𝑧 𝑤𝑤 𝑧 )
83 82 a1i ( 𝜑 → ( 𝑧 𝑤𝑤 𝑧 ) )
84 83 notbid ( 𝜑 → ( ¬ 𝑧 𝑤 ↔ ¬ 𝑤 𝑧 ) )
85 84 rabbidv ( 𝜑 → { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } = { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } )
86 85 mpteq2dv ( 𝜑 → ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) = ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) )
87 86 rneqd ( 𝜑 → ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) = ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) )
88 cnvin ( ∩ ( 𝐴 × 𝐴 ) ) = ( ( 𝐴 × 𝐴 ) )
89 cnvxp ( 𝐴 × 𝐴 ) = ( 𝐴 × 𝐴 )
90 89 ineq2i ( ( 𝐴 × 𝐴 ) ) = ( ∩ ( 𝐴 × 𝐴 ) )
91 88 90 eqtri ( ∩ ( 𝐴 × 𝐴 ) ) = ( ∩ ( 𝐴 × 𝐴 ) )
92 91 fveq2i ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) = ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) )
93 1 ressprs ( ( 𝐾 ∈ Proset ∧ 𝐴𝐵 ) → ( 𝐾s 𝐴 ) ∈ Proset )
94 8 4 93 syl2anc ( 𝜑 → ( 𝐾s 𝐴 ) ∈ Proset )
95 eqid ( Base ‘ ( 𝐾s 𝐴 ) ) = ( Base ‘ ( 𝐾s 𝐴 ) )
96 eqid ( ( le ‘ ( 𝐾s 𝐴 ) ) ∩ ( ( Base ‘ ( 𝐾s 𝐴 ) ) × ( Base ‘ ( 𝐾s 𝐴 ) ) ) ) = ( ( le ‘ ( 𝐾s 𝐴 ) ) ∩ ( ( Base ‘ ( 𝐾s 𝐴 ) ) × ( Base ‘ ( 𝐾s 𝐴 ) ) ) )
97 95 96 ordtcnvNEW ( ( 𝐾s 𝐴 ) ∈ Proset → ( ordTop ‘ ( ( le ‘ ( 𝐾s 𝐴 ) ) ∩ ( ( Base ‘ ( 𝐾s 𝐴 ) ) × ( Base ‘ ( 𝐾s 𝐴 ) ) ) ) ) = ( ordTop ‘ ( ( le ‘ ( 𝐾s 𝐴 ) ) ∩ ( ( Base ‘ ( 𝐾s 𝐴 ) ) × ( Base ‘ ( 𝐾s 𝐴 ) ) ) ) ) )
98 94 97 syl ( 𝜑 → ( ordTop ‘ ( ( le ‘ ( 𝐾s 𝐴 ) ) ∩ ( ( Base ‘ ( 𝐾s 𝐴 ) ) × ( Base ‘ ( 𝐾s 𝐴 ) ) ) ) ) = ( ordTop ‘ ( ( le ‘ ( 𝐾s 𝐴 ) ) ∩ ( ( Base ‘ ( 𝐾s 𝐴 ) ) × ( Base ‘ ( 𝐾s 𝐴 ) ) ) ) ) )
99 1 2 prsss ( ( 𝐾 ∈ Proset ∧ 𝐴𝐵 ) → ( ∩ ( 𝐴 × 𝐴 ) ) = ( ( le ‘ 𝐾 ) ∩ ( 𝐴 × 𝐴 ) ) )
100 8 4 99 syl2anc ( 𝜑 → ( ∩ ( 𝐴 × 𝐴 ) ) = ( ( le ‘ 𝐾 ) ∩ ( 𝐴 × 𝐴 ) ) )
101 eqid ( 𝐾s 𝐴 ) = ( 𝐾s 𝐴 )
102 101 63 ressle ( 𝐴 ∈ V → ( le ‘ 𝐾 ) = ( le ‘ ( 𝐾s 𝐴 ) ) )
103 19 102 syl ( 𝜑 → ( le ‘ 𝐾 ) = ( le ‘ ( 𝐾s 𝐴 ) ) )
104 101 1 ressbas2 ( 𝐴𝐵𝐴 = ( Base ‘ ( 𝐾s 𝐴 ) ) )
105 4 104 syl ( 𝜑𝐴 = ( Base ‘ ( 𝐾s 𝐴 ) ) )
106 105 sqxpeqd ( 𝜑 → ( 𝐴 × 𝐴 ) = ( ( Base ‘ ( 𝐾s 𝐴 ) ) × ( Base ‘ ( 𝐾s 𝐴 ) ) ) )
107 103 106 ineq12d ( 𝜑 → ( ( le ‘ 𝐾 ) ∩ ( 𝐴 × 𝐴 ) ) = ( ( le ‘ ( 𝐾s 𝐴 ) ) ∩ ( ( Base ‘ ( 𝐾s 𝐴 ) ) × ( Base ‘ ( 𝐾s 𝐴 ) ) ) ) )
108 100 107 eqtrd ( 𝜑 → ( ∩ ( 𝐴 × 𝐴 ) ) = ( ( le ‘ ( 𝐾s 𝐴 ) ) ∩ ( ( Base ‘ ( 𝐾s 𝐴 ) ) × ( Base ‘ ( 𝐾s 𝐴 ) ) ) ) )
109 108 cnveqd ( 𝜑 ( ∩ ( 𝐴 × 𝐴 ) ) = ( ( le ‘ ( 𝐾s 𝐴 ) ) ∩ ( ( Base ‘ ( 𝐾s 𝐴 ) ) × ( Base ‘ ( 𝐾s 𝐴 ) ) ) ) )
110 109 fveq2d ( 𝜑 → ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) = ( ordTop ‘ ( ( le ‘ ( 𝐾s 𝐴 ) ) ∩ ( ( Base ‘ ( 𝐾s 𝐴 ) ) × ( Base ‘ ( 𝐾s 𝐴 ) ) ) ) ) )
111 108 fveq2d ( 𝜑 → ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) = ( ordTop ‘ ( ( le ‘ ( 𝐾s 𝐴 ) ) ∩ ( ( Base ‘ ( 𝐾s 𝐴 ) ) × ( Base ‘ ( 𝐾s 𝐴 ) ) ) ) ) )
112 98 110 111 3eqtr4d ( 𝜑 → ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) = ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) )
113 92 112 syl5reqr ( 𝜑 → ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) = ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) )
114 113 eleq2d ( 𝜑 → ( ( 𝑣𝐴 ) ∈ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ( 𝑣𝐴 ) ∈ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) ) )
115 87 114 raleqbidv ( 𝜑 → ( ∀ 𝑣 ∈ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ( 𝑣𝐴 ) ∈ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ∀ 𝑣 ∈ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ( 𝑣𝐴 ) ∈ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) ) )
116 79 115 mpbird ( 𝜑 → ∀ 𝑣 ∈ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ( 𝑣𝐴 ) ∈ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) )
117 ralunb ( ∀ 𝑣 ∈ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ( 𝑣𝐴 ) ∈ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ( ∀ 𝑣 ∈ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ( 𝑣𝐴 ) ∈ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) ∧ ∀ 𝑣 ∈ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ( 𝑣𝐴 ) ∈ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) ) )
118 56 116 117 sylanbrc ( 𝜑 → ∀ 𝑣 ∈ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ( 𝑣𝐴 ) ∈ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) )
119 ralunb ( ∀ 𝑣 ∈ ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ( 𝑣𝐴 ) ∈ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ( ∀ 𝑣 ∈ { 𝐵 } ( 𝑣𝐴 ) ∈ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) ∧ ∀ 𝑣 ∈ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ( 𝑣𝐴 ) ∈ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) ) )
120 55 118 119 sylanbrc ( 𝜑 → ∀ 𝑣 ∈ ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ( 𝑣𝐴 ) ∈ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) )
121 eqid ( 𝑣 ∈ ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ↦ ( 𝑣𝐴 ) ) = ( 𝑣 ∈ ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ↦ ( 𝑣𝐴 ) )
122 121 fmpt ( ∀ 𝑣 ∈ ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ( 𝑣𝐴 ) ∈ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ( 𝑣 ∈ ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ↦ ( 𝑣𝐴 ) ) : ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ⟶ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) )
123 120 122 sylib ( 𝜑 → ( 𝑣 ∈ ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ↦ ( 𝑣𝐴 ) ) : ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ⟶ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) )
124 123 frnd ( 𝜑 → ran ( 𝑣 ∈ ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ↦ ( 𝑣𝐴 ) ) ⊆ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) )
125 38 124 eqsstrd ( 𝜑 → ( ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ↾t 𝐴 ) ⊆ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) )
126 tgfiss ( ( ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) ∈ Top ∧ ( ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ↾t 𝐴 ) ⊆ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) ) → ( topGen ‘ ( fi ‘ ( ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ↾t 𝐴 ) ) ) ⊆ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) )
127 31 125 126 syl2anc ( 𝜑 → ( topGen ‘ ( fi ‘ ( ( { 𝐵 } ∪ ( ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑤 𝑧 } ) ∪ ran ( 𝑧𝐵 ↦ { 𝑤𝐵 ∣ ¬ 𝑧 𝑤 } ) ) ) ↾t 𝐴 ) ) ) ⊆ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) )
128 25 127 eqsstrd ( 𝜑 → ( ( ordTop ‘ ) ↾t 𝐴 ) ⊆ ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) )
129 10 128 eqssd ( 𝜑 → ( ordTop ‘ ( ∩ ( 𝐴 × 𝐴 ) ) ) = ( ( ordTop ‘ ) ↾t 𝐴 ) )