Metamath Proof Explorer


Theorem ordtrest2NEW

Description: An interval-closed set A in a total order has the same subspace topology as the restricted order topology. (An interval-closed set is the same thing as an open or half-open or closed interval in RR , but in other sets like QQ there are interval-closed sets like ( _pi , +oo ) i^i QQ that are not intervals.) (Contributed by Mario Carneiro, 9-Sep-2015) (Revised by Thierry Arnoux, 11-Sep-2018)

Ref Expression
Hypotheses ordtNEW.b B = Base K
ordtNEW.l ˙ = K B × B
ordtrest2NEW.2 φ K Toset
ordtrest2NEW.3 φ A B
ordtrest2NEW.4 φ x A y A z B | x ˙ z z ˙ y A
Assertion ordtrest2NEW φ ordTop ˙ A × A = ordTop ˙ 𝑡 A

Proof

Step Hyp Ref Expression
1 ordtNEW.b B = Base K
2 ordtNEW.l ˙ = K B × B
3 ordtrest2NEW.2 φ K Toset
4 ordtrest2NEW.3 φ A B
5 ordtrest2NEW.4 φ x A y A z B | x ˙ z z ˙ y A
6 tospos K Toset K Poset
7 posprs K Poset K Proset
8 3 6 7 3syl φ K Proset
9 1 2 ordtrestNEW K Proset A B ordTop ˙ A × A ordTop ˙ 𝑡 A
10 8 4 9 syl2anc φ ordTop ˙ A × A ordTop ˙ 𝑡 A
11 eqid ran z B w B | ¬ w ˙ z = ran z B w B | ¬ w ˙ z
12 eqid ran z B w B | ¬ z ˙ w = ran z B w B | ¬ z ˙ w
13 1 2 11 12 ordtprsval K Proset ordTop ˙ = topGen fi B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w
14 8 13 syl φ ordTop ˙ = topGen fi B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w
15 14 oveq1d φ ordTop ˙ 𝑡 A = topGen fi B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w 𝑡 A
16 fibas fi B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w TopBases
17 1 fvexi B V
18 17 a1i φ B V
19 18 4 ssexd φ A V
20 tgrest fi B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w TopBases A V topGen fi B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w 𝑡 A = topGen fi B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w 𝑡 A
21 16 19 20 sylancr φ topGen fi B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w 𝑡 A = topGen fi B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w 𝑡 A
22 15 21 eqtr4d φ ordTop ˙ 𝑡 A = topGen fi B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w 𝑡 A
23 firest fi B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w 𝑡 A = fi B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w 𝑡 A
24 23 fveq2i topGen fi B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w 𝑡 A = topGen fi B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w 𝑡 A
25 22 24 eqtr4di φ ordTop ˙ 𝑡 A = topGen fi B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w 𝑡 A
26 fvex K V
27 26 inex1 K B × B V
28 2 27 eqeltri ˙ V
29 28 inex1 ˙ A × A V
30 ordttop ˙ A × A V ordTop ˙ A × A Top
31 29 30 mp1i φ ordTop ˙ A × A Top
32 1 2 11 12 ordtprsuni K Proset B = B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w
33 8 32 syl φ B = B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w
34 33 18 eqeltrrd φ B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w V
35 uniexb B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w V B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w V
36 34 35 sylibr φ B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w V
37 restval B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w V A V B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w 𝑡 A = ran v B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w v A
38 36 19 37 syl2anc φ B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w 𝑡 A = ran v B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w v A
39 sseqin2 A B B A = A
40 4 39 sylib φ B A = A
41 eqid dom ˙ A × A = dom ˙ A × A
42 41 ordttopon ˙ A × A V ordTop ˙ A × A TopOn dom ˙ A × A
43 29 42 mp1i φ ordTop ˙ A × A TopOn dom ˙ A × A
44 1 2 prsssdm K Proset A B dom ˙ A × A = A
45 8 4 44 syl2anc φ dom ˙ A × A = A
46 45 fveq2d φ TopOn dom ˙ A × A = TopOn A
47 43 46 eleqtrd φ ordTop ˙ A × A TopOn A
48 toponmax ordTop ˙ A × A TopOn A A ordTop ˙ A × A
49 47 48 syl φ A ordTop ˙ A × A
50 40 49 eqeltrd φ B A ordTop ˙ A × A
51 elsni v B v = B
52 51 ineq1d v B v A = B A
53 52 eleq1d v B v A ordTop ˙ A × A B A ordTop ˙ A × A
54 50 53 syl5ibrcom φ v B v A ordTop ˙ A × A
55 54 ralrimiv φ v B v A ordTop ˙ A × A
56 1 2 3 4 5 ordtrest2NEWlem φ v ran z B w B | ¬ w ˙ z v A ordTop ˙ A × A
57 eqid ODual K = ODual K
58 57 1 odubas B = Base ODual K
59 2 cnveqi ˙ -1 = K B × B -1
60 cnvin K B × B -1 = K -1 B × B -1
61 cnvxp B × B -1 = B × B
62 61 ineq2i K -1 B × B -1 = K -1 B × B
63 eqid K = K
64 57 63 oduleval K -1 = ODual K
65 64 ineq1i K -1 B × B = ODual K B × B
66 60 62 65 3eqtri K B × B -1 = ODual K B × B
67 59 66 eqtri ˙ -1 = ODual K B × B
68 57 odutos K Toset ODual K Toset
69 3 68 syl φ ODual K Toset
70 vex y V
71 vex z V
72 70 71 brcnv y ˙ -1 z z ˙ y
73 vex x V
74 71 73 brcnv z ˙ -1 x x ˙ z
75 72 74 anbi12ci y ˙ -1 z z ˙ -1 x x ˙ z z ˙ y
76 75 rabbii z B | y ˙ -1 z z ˙ -1 x = z B | x ˙ z z ˙ y
77 76 5 eqsstrid φ x A y A z B | y ˙ -1 z z ˙ -1 x A
78 77 ancom2s φ y A x A z B | y ˙ -1 z z ˙ -1 x A
79 58 67 69 4 78 ordtrest2NEWlem φ v ran z B w B | ¬ w ˙ -1 z v A ordTop ˙ -1 A × A
80 vex w V
81 80 71 brcnv w ˙ -1 z z ˙ w
82 81 bicomi z ˙ w w ˙ -1 z
83 82 a1i φ z ˙ w w ˙ -1 z
84 83 notbid φ ¬ z ˙ w ¬ w ˙ -1 z
85 84 rabbidv φ w B | ¬ z ˙ w = w B | ¬ w ˙ -1 z
86 85 mpteq2dv φ z B w B | ¬ z ˙ w = z B w B | ¬ w ˙ -1 z
87 86 rneqd φ ran z B w B | ¬ z ˙ w = ran z B w B | ¬ w ˙ -1 z
88 1 ressprs K Proset A B K 𝑠 A Proset
89 8 4 88 syl2anc φ K 𝑠 A Proset
90 eqid Base K 𝑠 A = Base K 𝑠 A
91 eqid K 𝑠 A Base K 𝑠 A × Base K 𝑠 A = K 𝑠 A Base K 𝑠 A × Base K 𝑠 A
92 90 91 ordtcnvNEW K 𝑠 A Proset ordTop K 𝑠 A Base K 𝑠 A × Base K 𝑠 A -1 = ordTop K 𝑠 A Base K 𝑠 A × Base K 𝑠 A
93 89 92 syl φ ordTop K 𝑠 A Base K 𝑠 A × Base K 𝑠 A -1 = ordTop K 𝑠 A Base K 𝑠 A × Base K 𝑠 A
94 1 2 prsss K Proset A B ˙ A × A = K A × A
95 8 4 94 syl2anc φ ˙ A × A = K A × A
96 eqid K 𝑠 A = K 𝑠 A
97 96 63 ressle A V K = K 𝑠 A
98 19 97 syl φ K = K 𝑠 A
99 96 1 ressbas2 A B A = Base K 𝑠 A
100 4 99 syl φ A = Base K 𝑠 A
101 100 sqxpeqd φ A × A = Base K 𝑠 A × Base K 𝑠 A
102 98 101 ineq12d φ K A × A = K 𝑠 A Base K 𝑠 A × Base K 𝑠 A
103 95 102 eqtrd φ ˙ A × A = K 𝑠 A Base K 𝑠 A × Base K 𝑠 A
104 103 cnveqd φ ˙ A × A -1 = K 𝑠 A Base K 𝑠 A × Base K 𝑠 A -1
105 104 fveq2d φ ordTop ˙ A × A -1 = ordTop K 𝑠 A Base K 𝑠 A × Base K 𝑠 A -1
106 103 fveq2d φ ordTop ˙ A × A = ordTop K 𝑠 A Base K 𝑠 A × Base K 𝑠 A
107 93 105 106 3eqtr4d φ ordTop ˙ A × A -1 = ordTop ˙ A × A
108 cnvin ˙ A × A -1 = ˙ -1 A × A -1
109 cnvxp A × A -1 = A × A
110 109 ineq2i ˙ -1 A × A -1 = ˙ -1 A × A
111 108 110 eqtri ˙ A × A -1 = ˙ -1 A × A
112 111 fveq2i ordTop ˙ A × A -1 = ordTop ˙ -1 A × A
113 107 112 eqtr3di φ ordTop ˙ A × A = ordTop ˙ -1 A × A
114 113 eleq2d φ v A ordTop ˙ A × A v A ordTop ˙ -1 A × A
115 87 114 raleqbidv φ v ran z B w B | ¬ z ˙ w v A ordTop ˙ A × A v ran z B w B | ¬ w ˙ -1 z v A ordTop ˙ -1 A × A
116 79 115 mpbird φ v ran z B w B | ¬ z ˙ w v A ordTop ˙ A × A
117 ralunb v ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w v A ordTop ˙ A × A v ran z B w B | ¬ w ˙ z v A ordTop ˙ A × A v ran z B w B | ¬ z ˙ w v A ordTop ˙ A × A
118 56 116 117 sylanbrc φ v ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w v A ordTop ˙ A × A
119 ralunb v B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w v A ordTop ˙ A × A v B v A ordTop ˙ A × A v ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w v A ordTop ˙ A × A
120 55 118 119 sylanbrc φ v B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w v A ordTop ˙ A × A
121 eqid v B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w v A = v B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w v A
122 121 fmpt v B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w v A ordTop ˙ A × A v B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w v A : B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w ordTop ˙ A × A
123 120 122 sylib φ v B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w v A : B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w ordTop ˙ A × A
124 123 frnd φ ran v B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w v A ordTop ˙ A × A
125 38 124 eqsstrd φ B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w 𝑡 A ordTop ˙ A × A
126 tgfiss ordTop ˙ A × A Top B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w 𝑡 A ordTop ˙ A × A topGen fi B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w 𝑡 A ordTop ˙ A × A
127 31 125 126 syl2anc φ topGen fi B ran z B w B | ¬ w ˙ z ran z B w B | ¬ z ˙ w 𝑡 A ordTop ˙ A × A
128 25 127 eqsstrd φ ordTop ˙ 𝑡 A ordTop ˙ A × A
129 10 128 eqssd φ ordTop ˙ A × A = ordTop ˙ 𝑡 A