Metamath Proof Explorer


Theorem odutos

Description: Being a toset is a self-dual property. (Contributed by Thierry Arnoux, 13-Sep-2018)

Ref Expression
Hypothesis odutos.d D = ODual K
Assertion odutos K Toset D Toset

Proof

Step Hyp Ref Expression
1 odutos.d D = ODual K
2 tospos K Toset K Poset
3 1 odupos K Poset D Poset
4 2 3 syl K Toset D Poset
5 eqid Base K = Base K
6 eqid K = K
7 5 6 tleile K Toset y Base K x Base K y K x x K y
8 vex x V
9 vex y V
10 8 9 brcnv x K -1 y y K x
11 9 8 brcnv y K -1 x x K y
12 10 11 orbi12i x K -1 y y K -1 x y K x x K y
13 7 12 sylibr K Toset y Base K x Base K x K -1 y y K -1 x
14 13 3com23 K Toset x Base K y Base K x K -1 y y K -1 x
15 14 3expb K Toset x Base K y Base K x K -1 y y K -1 x
16 15 ralrimivva K Toset x Base K y Base K x K -1 y y K -1 x
17 1 5 odubas Base K = Base D
18 1 6 oduleval K -1 = D
19 17 18 istos D Toset D Poset x Base K y Base K x K -1 y y K -1 x
20 4 16 19 sylanbrc K Toset D Toset