Metamath Proof Explorer


Theorem odutos

Description: Being a toset is a self-dual property. (Contributed by Thierry Arnoux, 13-Sep-2018)

Ref Expression
Hypothesis odutos.d
|- D = ( ODual ` K )
Assertion odutos
|- ( K e. Toset -> D e. Toset )

Proof

Step Hyp Ref Expression
1 odutos.d
 |-  D = ( ODual ` K )
2 tospos
 |-  ( K e. Toset -> K e. Poset )
3 1 odupos
 |-  ( K e. Poset -> D e. Poset )
4 2 3 syl
 |-  ( K e. Toset -> D e. Poset )
5 eqid
 |-  ( Base ` K ) = ( Base ` K )
6 eqid
 |-  ( le ` K ) = ( le ` K )
7 5 6 tleile
 |-  ( ( K e. Toset /\ y e. ( Base ` K ) /\ x e. ( Base ` K ) ) -> ( y ( le ` K ) x \/ x ( le ` K ) y ) )
8 vex
 |-  x e. _V
9 vex
 |-  y e. _V
10 8 9 brcnv
 |-  ( x `' ( le ` K ) y <-> y ( le ` K ) x )
11 9 8 brcnv
 |-  ( y `' ( le ` K ) x <-> x ( le ` K ) y )
12 10 11 orbi12i
 |-  ( ( x `' ( le ` K ) y \/ y `' ( le ` K ) x ) <-> ( y ( le ` K ) x \/ x ( le ` K ) y ) )
13 7 12 sylibr
 |-  ( ( K e. Toset /\ y e. ( Base ` K ) /\ x e. ( Base ` K ) ) -> ( x `' ( le ` K ) y \/ y `' ( le ` K ) x ) )
14 13 3com23
 |-  ( ( K e. Toset /\ x e. ( Base ` K ) /\ y e. ( Base ` K ) ) -> ( x `' ( le ` K ) y \/ y `' ( le ` K ) x ) )
15 14 3expb
 |-  ( ( K e. Toset /\ ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) -> ( x `' ( le ` K ) y \/ y `' ( le ` K ) x ) )
16 15 ralrimivva
 |-  ( K e. Toset -> A. x e. ( Base ` K ) A. y e. ( Base ` K ) ( x `' ( le ` K ) y \/ y `' ( le ` K ) x ) )
17 1 5 odubas
 |-  ( Base ` K ) = ( Base ` D )
18 1 6 oduleval
 |-  `' ( le ` K ) = ( le ` D )
19 17 18 istos
 |-  ( D e. Toset <-> ( D e. Poset /\ A. x e. ( Base ` K ) A. y e. ( Base ` K ) ( x `' ( le ` K ) y \/ y `' ( le ` K ) x ) ) )
20 4 16 19 sylanbrc
 |-  ( K e. Toset -> D e. Toset )