Step |
Hyp |
Ref |
Expression |
1 |
|
ordtNEW.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
ordtNEW.l |
⊢ ≤ = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) |
3 |
|
ordtposval.e |
⊢ 𝐸 = ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) |
4 |
|
ordtposval.f |
⊢ 𝐹 = ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) |
5 |
|
fvex |
⊢ ( le ‘ 𝐾 ) ∈ V |
6 |
5
|
inex1 |
⊢ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ∈ V |
7 |
2 6
|
eqeltri |
⊢ ≤ ∈ V |
8 |
|
eqid |
⊢ dom ≤ = dom ≤ |
9 |
|
eqid |
⊢ ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) = ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) |
10 |
|
eqid |
⊢ ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) = ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) |
11 |
8 9 10
|
ordtval |
⊢ ( ≤ ∈ V → ( ordTop ‘ ≤ ) = ( topGen ‘ ( fi ‘ ( { dom ≤ } ∪ ( ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ) ) |
12 |
7 11
|
ax-mp |
⊢ ( ordTop ‘ ≤ ) = ( topGen ‘ ( fi ‘ ( { dom ≤ } ∪ ( ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ) |
13 |
1 2
|
prsdm |
⊢ ( 𝐾 ∈ Proset → dom ≤ = 𝐵 ) |
14 |
13
|
sneqd |
⊢ ( 𝐾 ∈ Proset → { dom ≤ } = { 𝐵 } ) |
15 |
13
|
rabeqdv |
⊢ ( 𝐾 ∈ Proset → { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) |
16 |
13 15
|
mpteq12dv |
⊢ ( 𝐾 ∈ Proset → ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) = ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ) |
17 |
16
|
rneqd |
⊢ ( 𝐾 ∈ Proset → ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) = ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ) |
18 |
17 3
|
eqtr4di |
⊢ ( 𝐾 ∈ Proset → ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) = 𝐸 ) |
19 |
13
|
rabeqdv |
⊢ ( 𝐾 ∈ Proset → { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) |
20 |
13 19
|
mpteq12dv |
⊢ ( 𝐾 ∈ Proset → ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) = ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) |
21 |
20
|
rneqd |
⊢ ( 𝐾 ∈ Proset → ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) = ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) |
22 |
21 4
|
eqtr4di |
⊢ ( 𝐾 ∈ Proset → ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) = 𝐹 ) |
23 |
18 22
|
uneq12d |
⊢ ( 𝐾 ∈ Proset → ( ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) ) = ( 𝐸 ∪ 𝐹 ) ) |
24 |
14 23
|
uneq12d |
⊢ ( 𝐾 ∈ Proset → ( { dom ≤ } ∪ ( ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) = ( { 𝐵 } ∪ ( 𝐸 ∪ 𝐹 ) ) ) |
25 |
24
|
fveq2d |
⊢ ( 𝐾 ∈ Proset → ( fi ‘ ( { dom ≤ } ∪ ( ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) = ( fi ‘ ( { 𝐵 } ∪ ( 𝐸 ∪ 𝐹 ) ) ) ) |
26 |
25
|
fveq2d |
⊢ ( 𝐾 ∈ Proset → ( topGen ‘ ( fi ‘ ( { dom ≤ } ∪ ( ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ) = ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( 𝐸 ∪ 𝐹 ) ) ) ) ) |
27 |
12 26
|
syl5eq |
⊢ ( 𝐾 ∈ Proset → ( ordTop ‘ ≤ ) = ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( 𝐸 ∪ 𝐹 ) ) ) ) ) |