Metamath Proof Explorer


Theorem ordtprsval

Description: Value of the order topology for a proset. (Contributed by Thierry Arnoux, 11-Sep-2015)

Ref Expression
Hypotheses ordtNEW.b 𝐵 = ( Base ‘ 𝐾 )
ordtNEW.l = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) )
ordtposval.e 𝐸 = ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } )
ordtposval.f 𝐹 = ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } )
Assertion ordtprsval ( 𝐾 ∈ Proset → ( ordTop ‘ ) = ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( 𝐸𝐹 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 ordtNEW.b 𝐵 = ( Base ‘ 𝐾 )
2 ordtNEW.l = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) )
3 ordtposval.e 𝐸 = ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } )
4 ordtposval.f 𝐹 = ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } )
5 fvex ( le ‘ 𝐾 ) ∈ V
6 5 inex1 ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ∈ V
7 2 6 eqeltri ∈ V
8 eqid dom = dom
9 eqid ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑦 𝑥 } ) = ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑦 𝑥 } )
10 eqid ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑥 𝑦 } ) = ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑥 𝑦 } )
11 8 9 10 ordtval ( ∈ V → ( ordTop ‘ ) = ( topGen ‘ ( fi ‘ ( { dom } ∪ ( ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑥 𝑦 } ) ) ) ) ) )
12 7 11 ax-mp ( ordTop ‘ ) = ( topGen ‘ ( fi ‘ ( { dom } ∪ ( ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑥 𝑦 } ) ) ) ) )
13 1 2 prsdm ( 𝐾 ∈ Proset → dom = 𝐵 )
14 13 sneqd ( 𝐾 ∈ Proset → { dom } = { 𝐵 } )
15 13 rabeqdv ( 𝐾 ∈ Proset → { 𝑦 ∈ dom ∣ ¬ 𝑦 𝑥 } = { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } )
16 13 15 mpteq12dv ( 𝐾 ∈ Proset → ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑦 𝑥 } ) = ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) )
17 16 rneqd ( 𝐾 ∈ Proset → ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑦 𝑥 } ) = ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) )
18 17 3 eqtr4di ( 𝐾 ∈ Proset → ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑦 𝑥 } ) = 𝐸 )
19 13 rabeqdv ( 𝐾 ∈ Proset → { 𝑦 ∈ dom ∣ ¬ 𝑥 𝑦 } = { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } )
20 13 19 mpteq12dv ( 𝐾 ∈ Proset → ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑥 𝑦 } ) = ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) )
21 20 rneqd ( 𝐾 ∈ Proset → ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑥 𝑦 } ) = ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) )
22 21 4 eqtr4di ( 𝐾 ∈ Proset → ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑥 𝑦 } ) = 𝐹 )
23 18 22 uneq12d ( 𝐾 ∈ Proset → ( ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑥 𝑦 } ) ) = ( 𝐸𝐹 ) )
24 14 23 uneq12d ( 𝐾 ∈ Proset → ( { dom } ∪ ( ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑥 𝑦 } ) ) ) = ( { 𝐵 } ∪ ( 𝐸𝐹 ) ) )
25 24 fveq2d ( 𝐾 ∈ Proset → ( fi ‘ ( { dom } ∪ ( ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑥 𝑦 } ) ) ) ) = ( fi ‘ ( { 𝐵 } ∪ ( 𝐸𝐹 ) ) ) )
26 25 fveq2d ( 𝐾 ∈ Proset → ( topGen ‘ ( fi ‘ ( { dom } ∪ ( ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ↦ { 𝑦 ∈ dom ∣ ¬ 𝑥 𝑦 } ) ) ) ) ) = ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( 𝐸𝐹 ) ) ) ) )
27 12 26 eqtrid ( 𝐾 ∈ Proset → ( ordTop ‘ ) = ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( 𝐸𝐹 ) ) ) ) )