| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordtconn.x |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
ordtconn.l |
⊢ ≤ = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) |
| 3 |
|
ordtconn.j |
⊢ 𝐽 = ( ordTop ‘ ≤ ) |
| 4 |
|
nfv |
⊢ Ⅎ 𝑟 ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑟 𝐴 |
| 6 |
|
nfra2w |
⊢ Ⅎ 𝑟 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) |
| 7 |
5 6
|
nfralw |
⊢ Ⅎ 𝑟 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) |
| 8 |
7
|
nfn |
⊢ Ⅎ 𝑟 ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) |
| 9 |
4 8
|
nfan |
⊢ Ⅎ 𝑟 ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ) |
| 10 |
|
tospos |
⊢ ( 𝐾 ∈ Toset → 𝐾 ∈ Poset ) |
| 11 |
|
posprs |
⊢ ( 𝐾 ∈ Poset → 𝐾 ∈ Proset ) |
| 12 |
|
fvex |
⊢ ( le ‘ 𝐾 ) ∈ V |
| 13 |
12
|
inex1 |
⊢ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ∈ V |
| 14 |
2 13
|
eqeltri |
⊢ ≤ ∈ V |
| 15 |
|
eqid |
⊢ dom ≤ = dom ≤ |
| 16 |
15
|
ordttopon |
⊢ ( ≤ ∈ V → ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ dom ≤ ) ) |
| 17 |
14 16
|
ax-mp |
⊢ ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ dom ≤ ) |
| 18 |
1 2
|
prsdm |
⊢ ( 𝐾 ∈ Proset → dom ≤ = 𝐵 ) |
| 19 |
18
|
fveq2d |
⊢ ( 𝐾 ∈ Proset → ( TopOn ‘ dom ≤ ) = ( TopOn ‘ 𝐵 ) ) |
| 20 |
17 19
|
eleqtrid |
⊢ ( 𝐾 ∈ Proset → ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ 𝐵 ) ) |
| 21 |
3 20
|
eqeltrid |
⊢ ( 𝐾 ∈ Proset → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 22 |
10 11 21
|
3syl |
⊢ ( 𝐾 ∈ Toset → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 23 |
22
|
ad3antrrr |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 24 |
23
|
adantlr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 25 |
|
simpllr |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → 𝐴 ⊆ 𝐵 ) |
| 26 |
25
|
adantlr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → 𝐴 ⊆ 𝐵 ) |
| 27 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) → 𝐾 ∈ Toset ) |
| 28 |
|
snex |
⊢ { 𝐵 } ∈ V |
| 29 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 30 |
29
|
mptex |
⊢ ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∈ V |
| 31 |
30
|
rnex |
⊢ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∈ V |
| 32 |
29
|
mptex |
⊢ ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ∈ V |
| 33 |
32
|
rnex |
⊢ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ∈ V |
| 34 |
31 33
|
unex |
⊢ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ∈ V |
| 35 |
28 34
|
unex |
⊢ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ∈ V |
| 36 |
|
ssfii |
⊢ ( ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ∈ V → ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ⊆ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ) |
| 37 |
35 36
|
ax-mp |
⊢ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ⊆ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) |
| 38 |
|
fvex |
⊢ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ∈ V |
| 39 |
|
bastg |
⊢ ( ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ∈ V → ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ⊆ ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ) ) |
| 40 |
38 39
|
ax-mp |
⊢ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ⊆ ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ) |
| 41 |
37 40
|
sstri |
⊢ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ⊆ ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ) |
| 42 |
|
eqid |
⊢ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) = ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) |
| 43 |
|
eqid |
⊢ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) = ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) |
| 44 |
1 2 42 43
|
ordtprsval |
⊢ ( 𝐾 ∈ Proset → ( ordTop ‘ ≤ ) = ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ) ) |
| 45 |
3 44
|
eqtrid |
⊢ ( 𝐾 ∈ Proset → 𝐽 = ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ) ) |
| 46 |
41 45
|
sseqtrrid |
⊢ ( 𝐾 ∈ Proset → ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ⊆ 𝐽 ) |
| 47 |
46
|
unssbd |
⊢ ( 𝐾 ∈ Proset → ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ⊆ 𝐽 ) |
| 48 |
27 10 11 47
|
4syl |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) → ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ⊆ 𝐽 ) |
| 49 |
48
|
unssbd |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) → ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ⊆ 𝐽 ) |
| 50 |
|
breq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑟 ≤ 𝑧 ↔ 𝑟 ≤ 𝑦 ) ) |
| 51 |
50
|
notbid |
⊢ ( 𝑧 = 𝑦 → ( ¬ 𝑟 ≤ 𝑧 ↔ ¬ 𝑟 ≤ 𝑦 ) ) |
| 52 |
51
|
cbvrabv |
⊢ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑦 } |
| 53 |
|
breq1 |
⊢ ( 𝑥 = 𝑟 → ( 𝑥 ≤ 𝑦 ↔ 𝑟 ≤ 𝑦 ) ) |
| 54 |
53
|
notbid |
⊢ ( 𝑥 = 𝑟 → ( ¬ 𝑥 ≤ 𝑦 ↔ ¬ 𝑟 ≤ 𝑦 ) ) |
| 55 |
54
|
rabbidv |
⊢ ( 𝑥 = 𝑟 → { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑦 } ) |
| 56 |
55
|
rspceeqv |
⊢ ( ( 𝑟 ∈ 𝐵 ∧ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑦 } ) → ∃ 𝑥 ∈ 𝐵 { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) |
| 57 |
52 56
|
mpan2 |
⊢ ( 𝑟 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐵 { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) |
| 58 |
29
|
rabex |
⊢ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∈ V |
| 59 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) = ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) |
| 60 |
59
|
elrnmpt |
⊢ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∈ V → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∈ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ↔ ∃ 𝑥 ∈ 𝐵 { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) |
| 61 |
58 60
|
ax-mp |
⊢ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∈ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ↔ ∃ 𝑥 ∈ 𝐵 { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) |
| 62 |
57 61
|
sylibr |
⊢ ( 𝑟 ∈ 𝐵 → { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∈ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) |
| 63 |
62
|
adantl |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) → { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∈ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) |
| 64 |
49 63
|
sseldd |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) → { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∈ 𝐽 ) |
| 65 |
64
|
ad2antrr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∈ 𝐽 ) |
| 66 |
48
|
unssad |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) → ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ⊆ 𝐽 ) |
| 67 |
|
breq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ≤ 𝑟 ↔ 𝑦 ≤ 𝑟 ) ) |
| 68 |
67
|
notbid |
⊢ ( 𝑧 = 𝑦 → ( ¬ 𝑧 ≤ 𝑟 ↔ ¬ 𝑦 ≤ 𝑟 ) ) |
| 69 |
68
|
cbvrabv |
⊢ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑟 } |
| 70 |
|
breq2 |
⊢ ( 𝑥 = 𝑟 → ( 𝑦 ≤ 𝑥 ↔ 𝑦 ≤ 𝑟 ) ) |
| 71 |
70
|
notbid |
⊢ ( 𝑥 = 𝑟 → ( ¬ 𝑦 ≤ 𝑥 ↔ ¬ 𝑦 ≤ 𝑟 ) ) |
| 72 |
71
|
rabbidv |
⊢ ( 𝑥 = 𝑟 → { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑟 } ) |
| 73 |
72
|
rspceeqv |
⊢ ( ( 𝑟 ∈ 𝐵 ∧ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑟 } ) → ∃ 𝑥 ∈ 𝐵 { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) |
| 74 |
69 73
|
mpan2 |
⊢ ( 𝑟 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐵 { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) |
| 75 |
29
|
rabex |
⊢ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∈ V |
| 76 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) = ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) |
| 77 |
76
|
elrnmpt |
⊢ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∈ V → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∈ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ↔ ∃ 𝑥 ∈ 𝐵 { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ) |
| 78 |
75 77
|
ax-mp |
⊢ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∈ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ↔ ∃ 𝑥 ∈ 𝐵 { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) |
| 79 |
74 78
|
sylibr |
⊢ ( 𝑟 ∈ 𝐵 → { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∈ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ) |
| 80 |
79
|
adantl |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) → { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∈ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ) |
| 81 |
66 80
|
sseldd |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) → { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∈ 𝐽 ) |
| 82 |
81
|
ad2antrr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∈ 𝐽 ) |
| 83 |
|
simpll |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ) |
| 84 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ¬ 𝑟 ∈ 𝐴 ) |
| 85 |
83 84
|
jca |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) |
| 86 |
|
simplrl |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ) |
| 87 |
|
ssel |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 88 |
87
|
ancrd |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) ) |
| 89 |
88
|
anim1d |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑥 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝑟 ≤ 𝑥 ) ) ) |
| 90 |
89
|
impl |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝑟 ≤ 𝑥 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝑟 ≤ 𝑥 ) ) |
| 91 |
|
elin |
⊢ ( 𝑥 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ 𝐴 ) ↔ ( 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∧ 𝑥 ∈ 𝐴 ) ) |
| 92 |
|
breq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑟 ≤ 𝑧 ↔ 𝑟 ≤ 𝑥 ) ) |
| 93 |
92
|
notbid |
⊢ ( 𝑧 = 𝑥 → ( ¬ 𝑟 ≤ 𝑧 ↔ ¬ 𝑟 ≤ 𝑥 ) ) |
| 94 |
93
|
elrab |
⊢ ( 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ↔ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑟 ≤ 𝑥 ) ) |
| 95 |
94
|
anbi1i |
⊢ ( ( 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∧ 𝑥 ∈ 𝐴 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑟 ≤ 𝑥 ) ∧ 𝑥 ∈ 𝐴 ) ) |
| 96 |
|
an32 |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑟 ≤ 𝑥 ) ∧ 𝑥 ∈ 𝐴 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝑟 ≤ 𝑥 ) ) |
| 97 |
91 95 96
|
3bitri |
⊢ ( 𝑥 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ 𝐴 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝑟 ≤ 𝑥 ) ) |
| 98 |
90 97
|
sylibr |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝑟 ≤ 𝑥 ) → 𝑥 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ 𝐴 ) ) |
| 99 |
98
|
ne0d |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝑟 ≤ 𝑥 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ 𝐴 ) ≠ ∅ ) |
| 100 |
25 99
|
sylanl1 |
⊢ ( ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝑟 ≤ 𝑥 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ 𝐴 ) ≠ ∅ ) |
| 101 |
100
|
r19.29an |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ 𝐴 ) ≠ ∅ ) |
| 102 |
85 86 101
|
syl2anc |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ 𝐴 ) ≠ ∅ ) |
| 103 |
|
simplrr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) |
| 104 |
|
ssel |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵 ) ) |
| 105 |
104
|
ancrd |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑦 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 106 |
105
|
anim1d |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑟 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ≤ 𝑟 ) ) ) |
| 107 |
106
|
impl |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ≤ 𝑟 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ≤ 𝑟 ) ) |
| 108 |
|
elin |
⊢ ( 𝑦 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∩ 𝐴 ) ↔ ( 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∧ 𝑦 ∈ 𝐴 ) ) |
| 109 |
68
|
elrab |
⊢ ( 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ≤ 𝑟 ) ) |
| 110 |
109
|
anbi1i |
⊢ ( ( 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∧ 𝑦 ∈ 𝐴 ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ≤ 𝑟 ) ∧ 𝑦 ∈ 𝐴 ) ) |
| 111 |
|
an32 |
⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ≤ 𝑟 ) ∧ 𝑦 ∈ 𝐴 ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ≤ 𝑟 ) ) |
| 112 |
108 110 111
|
3bitri |
⊢ ( 𝑦 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∩ 𝐴 ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ≤ 𝑟 ) ) |
| 113 |
107 112
|
sylibr |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ≤ 𝑟 ) → 𝑦 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∩ 𝐴 ) ) |
| 114 |
113
|
ne0d |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ≤ 𝑟 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∩ 𝐴 ) ≠ ∅ ) |
| 115 |
25 114
|
sylanl1 |
⊢ ( ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ≤ 𝑟 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∩ 𝐴 ) ≠ ∅ ) |
| 116 |
115
|
r19.29an |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∩ 𝐴 ) ≠ ∅ ) |
| 117 |
85 103 116
|
syl2anc |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∩ 𝐴 ) ≠ ∅ ) |
| 118 |
1 2
|
trleile |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝑟 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑟 ≤ 𝑧 ∨ 𝑧 ≤ 𝑟 ) ) |
| 119 |
|
oran |
⊢ ( ( 𝑟 ≤ 𝑧 ∨ 𝑧 ≤ 𝑟 ) ↔ ¬ ( ¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟 ) ) |
| 120 |
118 119
|
sylib |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝑟 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ¬ ( ¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟 ) ) |
| 121 |
120
|
3expa |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝑟 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ¬ ( ¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟 ) ) |
| 122 |
121
|
nrexdv |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝑟 ∈ 𝐵 ) → ¬ ∃ 𝑧 ∈ 𝐵 ( ¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟 ) ) |
| 123 |
|
rabid |
⊢ ( 𝑧 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ↔ ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑟 ≤ 𝑧 ) ) |
| 124 |
|
rabid |
⊢ ( 𝑧 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ↔ ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑧 ≤ 𝑟 ) ) |
| 125 |
123 124
|
anbi12i |
⊢ ( ( 𝑧 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∧ 𝑧 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ↔ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑟 ≤ 𝑧 ) ∧ ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑧 ≤ 𝑟 ) ) ) |
| 126 |
|
elin |
⊢ ( 𝑧 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ↔ ( 𝑧 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∧ 𝑧 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ) |
| 127 |
|
anandi |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ ( ¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟 ) ) ↔ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑟 ≤ 𝑧 ) ∧ ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑧 ≤ 𝑟 ) ) ) |
| 128 |
125 126 127
|
3bitr4i |
⊢ ( 𝑧 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ↔ ( 𝑧 ∈ 𝐵 ∧ ( ¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟 ) ) ) |
| 129 |
128
|
exbii |
⊢ ( ∃ 𝑧 𝑧 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ ( ¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟 ) ) ) |
| 130 |
|
nfrab1 |
⊢ Ⅎ 𝑧 { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } |
| 131 |
|
nfrab1 |
⊢ Ⅎ 𝑧 { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } |
| 132 |
130 131
|
nfin |
⊢ Ⅎ 𝑧 ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) |
| 133 |
132
|
n0f |
⊢ ( ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ) |
| 134 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ 𝐵 ( ¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟 ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ ( ¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟 ) ) ) |
| 135 |
129 133 134
|
3bitr4i |
⊢ ( ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ≠ ∅ ↔ ∃ 𝑧 ∈ 𝐵 ( ¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟 ) ) |
| 136 |
135
|
necon1bbii |
⊢ ( ¬ ∃ 𝑧 ∈ 𝐵 ( ¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟 ) ↔ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) = ∅ ) |
| 137 |
122 136
|
sylib |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝑟 ∈ 𝐵 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) = ∅ ) |
| 138 |
137
|
adantlr |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) = ∅ ) |
| 139 |
138
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) = ∅ ) |
| 140 |
139
|
ineq1d |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ∩ 𝐴 ) = ( ∅ ∩ 𝐴 ) ) |
| 141 |
|
0in |
⊢ ( ∅ ∩ 𝐴 ) = ∅ |
| 142 |
140 141
|
eqtrdi |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ∩ 𝐴 ) = ∅ ) |
| 143 |
142
|
adantlr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ∩ 𝐴 ) = ∅ ) |
| 144 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → 𝑟 ∈ 𝐵 ) |
| 145 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ¬ 𝑟 ∈ 𝐴 ) |
| 146 |
|
vex |
⊢ 𝑟 ∈ V |
| 147 |
146
|
snss |
⊢ ( 𝑟 ∈ 𝐵 ↔ { 𝑟 } ⊆ 𝐵 ) |
| 148 |
|
eldif |
⊢ ( 𝑟 ∈ ( 𝐵 ∖ 𝐴 ) ↔ ( 𝑟 ∈ 𝐵 ∧ ¬ 𝑟 ∈ 𝐴 ) ) |
| 149 |
146
|
snss |
⊢ ( 𝑟 ∈ ( 𝐵 ∖ 𝐴 ) ↔ { 𝑟 } ⊆ ( 𝐵 ∖ 𝐴 ) ) |
| 150 |
148 149
|
bitr3i |
⊢ ( ( 𝑟 ∈ 𝐵 ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ { 𝑟 } ⊆ ( 𝐵 ∖ 𝐴 ) ) |
| 151 |
|
ssconb |
⊢ ( ( { 𝑟 } ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵 ) → ( { 𝑟 } ⊆ ( 𝐵 ∖ 𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) ) |
| 152 |
150 151
|
bitrid |
⊢ ( ( { 𝑟 } ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝑟 ∈ 𝐵 ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) ) |
| 153 |
147 152
|
sylanb |
⊢ ( ( 𝑟 ∈ 𝐵 ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝑟 ∈ 𝐵 ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) ) |
| 154 |
153
|
adantl |
⊢ ( ( 𝐾 ∈ Toset ∧ ( 𝑟 ∈ 𝐵 ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( 𝑟 ∈ 𝐵 ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) ) |
| 155 |
154
|
anass1rs |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) → ( ( 𝑟 ∈ 𝐵 ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) ) |
| 156 |
155
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( ( 𝑟 ∈ 𝐵 ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) ) |
| 157 |
144 145 156
|
mpbi2and |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) |
| 158 |
10
|
ad3antrrr |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → 𝐾 ∈ Poset ) |
| 159 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ) |
| 160 |
130 131
|
nfun |
⊢ Ⅎ 𝑧 ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∪ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) |
| 161 |
|
nfcv |
⊢ Ⅎ 𝑧 ( 𝐵 ∖ { 𝑟 } ) |
| 162 |
|
ianor |
⊢ ( ¬ ( 𝑟 ≤ 𝑧 ∧ 𝑧 ≤ 𝑟 ) ↔ ( ¬ 𝑟 ≤ 𝑧 ∨ ¬ 𝑧 ≤ 𝑟 ) ) |
| 163 |
1 2
|
posrasymb |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑟 ≤ 𝑧 ∧ 𝑧 ≤ 𝑟 ) ↔ 𝑟 = 𝑧 ) ) |
| 164 |
|
equcom |
⊢ ( 𝑟 = 𝑧 ↔ 𝑧 = 𝑟 ) |
| 165 |
163 164
|
bitrdi |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑟 ≤ 𝑧 ∧ 𝑧 ≤ 𝑟 ) ↔ 𝑧 = 𝑟 ) ) |
| 166 |
165
|
necon3bbid |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ¬ ( 𝑟 ≤ 𝑧 ∧ 𝑧 ≤ 𝑟 ) ↔ 𝑧 ≠ 𝑟 ) ) |
| 167 |
162 166
|
bitr3id |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( ¬ 𝑟 ≤ 𝑧 ∨ ¬ 𝑧 ≤ 𝑟 ) ↔ 𝑧 ≠ 𝑟 ) ) |
| 168 |
167
|
3expia |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ) → ( 𝑧 ∈ 𝐵 → ( ( ¬ 𝑟 ≤ 𝑧 ∨ ¬ 𝑧 ≤ 𝑟 ) ↔ 𝑧 ≠ 𝑟 ) ) ) |
| 169 |
168
|
pm5.32d |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ) → ( ( 𝑧 ∈ 𝐵 ∧ ( ¬ 𝑟 ≤ 𝑧 ∨ ¬ 𝑧 ≤ 𝑟 ) ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 𝑟 ) ) ) |
| 170 |
123 124
|
orbi12i |
⊢ ( ( 𝑧 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∨ 𝑧 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ↔ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑟 ≤ 𝑧 ) ∨ ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑧 ≤ 𝑟 ) ) ) |
| 171 |
|
elun |
⊢ ( 𝑧 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∪ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ↔ ( 𝑧 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∨ 𝑧 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ) |
| 172 |
|
andi |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ ( ¬ 𝑟 ≤ 𝑧 ∨ ¬ 𝑧 ≤ 𝑟 ) ) ↔ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑟 ≤ 𝑧 ) ∨ ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑧 ≤ 𝑟 ) ) ) |
| 173 |
170 171 172
|
3bitr4ri |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ ( ¬ 𝑟 ≤ 𝑧 ∨ ¬ 𝑧 ≤ 𝑟 ) ) ↔ 𝑧 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∪ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ) |
| 174 |
|
eldifsn |
⊢ ( 𝑧 ∈ ( 𝐵 ∖ { 𝑟 } ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 𝑟 ) ) |
| 175 |
174
|
bicomi |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 𝑟 ) ↔ 𝑧 ∈ ( 𝐵 ∖ { 𝑟 } ) ) |
| 176 |
169 173 175
|
3bitr3g |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ) → ( 𝑧 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∪ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ↔ 𝑧 ∈ ( 𝐵 ∖ { 𝑟 } ) ) ) |
| 177 |
159 160 161 176
|
eqrd |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∪ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) = ( 𝐵 ∖ { 𝑟 } ) ) |
| 178 |
158 144 177
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∪ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) = ( 𝐵 ∖ { 𝑟 } ) ) |
| 179 |
157 178
|
sseqtrrd |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → 𝐴 ⊆ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∪ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ) |
| 180 |
179
|
adantlr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → 𝐴 ⊆ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∪ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ) |
| 181 |
24 26 65 82 102 117 143 180
|
nconnsubb |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ¬ ( 𝐽 ↾t 𝐴 ) ∈ Conn ) |
| 182 |
181
|
anasss |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) → ¬ ( 𝐽 ↾t 𝐴 ) ∈ Conn ) |
| 183 |
182
|
adantllr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) → ¬ ( 𝐽 ↾t 𝐴 ) ∈ Conn ) |
| 184 |
|
rexanali |
⊢ ( ∃ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ¬ ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ) |
| 185 |
184
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐴 ¬ ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ) |
| 186 |
|
rexcom |
⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ∃ 𝑟 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) |
| 187 |
|
rexnal |
⊢ ( ∃ 𝑦 ∈ 𝐴 ¬ ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ↔ ¬ ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ) |
| 188 |
185 186 187
|
3bitr3i |
⊢ ( ∃ 𝑟 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ¬ ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ) |
| 189 |
188
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑟 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐴 ¬ ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ) |
| 190 |
|
rexcom |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑟 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ∃ 𝑟 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) |
| 191 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ) |
| 192 |
189 190 191
|
3bitr3i |
⊢ ( ∃ 𝑟 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ) |
| 193 |
|
r19.41v |
⊢ ( ∃ 𝑦 ∈ 𝐴 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) |
| 194 |
193
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) |
| 195 |
|
r19.41v |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) |
| 196 |
|
reeanv |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃ 𝑦 ∈ 𝐴 𝑟 ≤ 𝑦 ) ) |
| 197 |
196
|
anbi1i |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃ 𝑦 ∈ 𝐴 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) |
| 198 |
194 195 197
|
3bitri |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃ 𝑦 ∈ 𝐴 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) |
| 199 |
198
|
rexbii |
⊢ ( ∃ 𝑟 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ∃ 𝑟 ∈ 𝐵 ( ( ∃ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃ 𝑦 ∈ 𝐴 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) |
| 200 |
192 199
|
bitr3i |
⊢ ( ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ↔ ∃ 𝑟 ∈ 𝐵 ( ( ∃ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃ 𝑦 ∈ 𝐴 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) |
| 201 |
27
|
ad2antrr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐾 ∈ Toset ) |
| 202 |
25
|
sselda |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
| 203 |
|
simpllr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑟 ∈ 𝐵 ) |
| 204 |
1 2
|
trleile |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) → ( 𝑥 ≤ 𝑟 ∨ 𝑟 ≤ 𝑥 ) ) |
| 205 |
201 202 203 204
|
syl3anc |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≤ 𝑟 ∨ 𝑟 ≤ 𝑥 ) ) |
| 206 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 207 |
|
simplr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑟 ∈ 𝐴 ) |
| 208 |
|
nelne2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑟 ∈ 𝐴 ) → 𝑥 ≠ 𝑟 ) |
| 209 |
206 207 208
|
syl2anc |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≠ 𝑟 ) |
| 210 |
158
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐾 ∈ Poset ) |
| 211 |
1 2
|
posrasymb |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑥 ) ↔ 𝑥 = 𝑟 ) ) |
| 212 |
211
|
necon3bbid |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) → ( ¬ ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑥 ) ↔ 𝑥 ≠ 𝑟 ) ) |
| 213 |
210 202 203 212
|
syl3anc |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑥 ) ↔ 𝑥 ≠ 𝑟 ) ) |
| 214 |
209 213
|
mpbird |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ¬ ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑥 ) ) |
| 215 |
205 214
|
jca |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ≤ 𝑟 ∨ 𝑟 ≤ 𝑥 ) ∧ ¬ ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑥 ) ) ) |
| 216 |
|
pm5.17 |
⊢ ( ( ( 𝑥 ≤ 𝑟 ∨ 𝑟 ≤ 𝑥 ) ∧ ¬ ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑥 ) ) ↔ ( 𝑥 ≤ 𝑟 ↔ ¬ 𝑟 ≤ 𝑥 ) ) |
| 217 |
215 216
|
sylib |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≤ 𝑟 ↔ ¬ 𝑟 ≤ 𝑥 ) ) |
| 218 |
217
|
rexbidva |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ↔ ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ) ) |
| 219 |
27
|
ad2antrr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝐾 ∈ Toset ) |
| 220 |
|
simpllr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑟 ∈ 𝐵 ) |
| 221 |
25
|
sselda |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) |
| 222 |
1 2
|
trleile |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝑟 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑟 ≤ 𝑦 ∨ 𝑦 ≤ 𝑟 ) ) |
| 223 |
219 220 221 222
|
syl3anc |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑟 ≤ 𝑦 ∨ 𝑦 ≤ 𝑟 ) ) |
| 224 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
| 225 |
|
simplr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ¬ 𝑟 ∈ 𝐴 ) |
| 226 |
|
nelne2 |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑟 ∈ 𝐴 ) → 𝑦 ≠ 𝑟 ) |
| 227 |
224 225 226
|
syl2anc |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ≠ 𝑟 ) |
| 228 |
227
|
necomd |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑟 ≠ 𝑦 ) |
| 229 |
158
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝐾 ∈ Poset ) |
| 230 |
1 2
|
posrasymb |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑟 ≤ 𝑦 ∧ 𝑦 ≤ 𝑟 ) ↔ 𝑟 = 𝑦 ) ) |
| 231 |
230
|
necon3bbid |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ¬ ( 𝑟 ≤ 𝑦 ∧ 𝑦 ≤ 𝑟 ) ↔ 𝑟 ≠ 𝑦 ) ) |
| 232 |
229 220 221 231
|
syl3anc |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ¬ ( 𝑟 ≤ 𝑦 ∧ 𝑦 ≤ 𝑟 ) ↔ 𝑟 ≠ 𝑦 ) ) |
| 233 |
228 232
|
mpbird |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ¬ ( 𝑟 ≤ 𝑦 ∧ 𝑦 ≤ 𝑟 ) ) |
| 234 |
223 233
|
jca |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑟 ≤ 𝑦 ∨ 𝑦 ≤ 𝑟 ) ∧ ¬ ( 𝑟 ≤ 𝑦 ∧ 𝑦 ≤ 𝑟 ) ) ) |
| 235 |
|
pm5.17 |
⊢ ( ( ( 𝑟 ≤ 𝑦 ∨ 𝑦 ≤ 𝑟 ) ∧ ¬ ( 𝑟 ≤ 𝑦 ∧ 𝑦 ≤ 𝑟 ) ) ↔ ( 𝑟 ≤ 𝑦 ↔ ¬ 𝑦 ≤ 𝑟 ) ) |
| 236 |
234 235
|
sylib |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑟 ≤ 𝑦 ↔ ¬ 𝑦 ≤ 𝑟 ) ) |
| 237 |
236
|
rexbidva |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐴 𝑟 ≤ 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) |
| 238 |
218 237
|
anbi12d |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( ( ∃ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃ 𝑦 ∈ 𝐴 𝑟 ≤ 𝑦 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ) |
| 239 |
238
|
ex |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) → ( ¬ 𝑟 ∈ 𝐴 → ( ( ∃ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃ 𝑦 ∈ 𝐴 𝑟 ≤ 𝑦 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ) ) |
| 240 |
239
|
pm5.32rd |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) → ( ( ( ∃ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃ 𝑦 ∈ 𝐴 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) ) |
| 241 |
240
|
rexbidva |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) → ( ∃ 𝑟 ∈ 𝐵 ( ( ∃ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃ 𝑦 ∈ 𝐴 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ∃ 𝑟 ∈ 𝐵 ( ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) ) |
| 242 |
200 241
|
bitrid |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) → ( ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ↔ ∃ 𝑟 ∈ 𝐵 ( ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) ) |
| 243 |
242
|
biimpa |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ) → ∃ 𝑟 ∈ 𝐵 ( ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) |
| 244 |
9 183 243
|
r19.29af |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ) → ¬ ( 𝐽 ↾t 𝐴 ) ∈ Conn ) |
| 245 |
244
|
ex |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) → ( ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) → ¬ ( 𝐽 ↾t 𝐴 ) ∈ Conn ) ) |
| 246 |
245
|
con4d |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝐽 ↾t 𝐴 ) ∈ Conn → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ) ) |