Metamath Proof Explorer


Theorem ordtconnlem1

Description: Connectedness in the order topology of a toset. This is the "easy" direction of ordtconn . See also reconnlem1 . (Contributed by Thierry Arnoux, 14-Sep-2018)

Ref Expression
Hypotheses ordtconn.x 𝐵 = ( Base ‘ 𝐾 )
ordtconn.l = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) )
ordtconn.j 𝐽 = ( ordTop ‘ )
Assertion ordtconnlem1 ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) → ( ( 𝐽t 𝐴 ) ∈ Conn → ∀ 𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 ordtconn.x 𝐵 = ( Base ‘ 𝐾 )
2 ordtconn.l = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) )
3 ordtconn.j 𝐽 = ( ordTop ‘ )
4 nfv 𝑟 ( 𝐾 ∈ Toset ∧ 𝐴𝐵 )
5 nfcv 𝑟 𝐴
6 nfra2w 𝑟𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 )
7 5 6 nfralw 𝑟𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 )
8 7 nfn 𝑟 ¬ ∀ 𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 )
9 4 8 nfan 𝑟 ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ ¬ ∀ 𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) )
10 tospos ( 𝐾 ∈ Toset → 𝐾 ∈ Poset )
11 posprs ( 𝐾 ∈ Poset → 𝐾 ∈ Proset )
12 fvex ( le ‘ 𝐾 ) ∈ V
13 12 inex1 ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ∈ V
14 2 13 eqeltri ∈ V
15 eqid dom = dom
16 15 ordttopon ( ∈ V → ( ordTop ‘ ) ∈ ( TopOn ‘ dom ) )
17 14 16 ax-mp ( ordTop ‘ ) ∈ ( TopOn ‘ dom )
18 1 2 prsdm ( 𝐾 ∈ Proset → dom = 𝐵 )
19 18 fveq2d ( 𝐾 ∈ Proset → ( TopOn ‘ dom ) = ( TopOn ‘ 𝐵 ) )
20 17 19 eleqtrid ( 𝐾 ∈ Proset → ( ordTop ‘ ) ∈ ( TopOn ‘ 𝐵 ) )
21 3 20 eqeltrid ( 𝐾 ∈ Proset → 𝐽 ∈ ( TopOn ‘ 𝐵 ) )
22 10 11 21 3syl ( 𝐾 ∈ Toset → 𝐽 ∈ ( TopOn ‘ 𝐵 ) )
23 22 ad3antrrr ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → 𝐽 ∈ ( TopOn ‘ 𝐵 ) )
24 23 adantlr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → 𝐽 ∈ ( TopOn ‘ 𝐵 ) )
25 simpllr ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → 𝐴𝐵 )
26 25 adantlr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → 𝐴𝐵 )
27 simpll ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → 𝐾 ∈ Toset )
28 27 10 11 3syl ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → 𝐾 ∈ Proset )
29 snex { 𝐵 } ∈ V
30 1 fvexi 𝐵 ∈ V
31 30 mptex ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∈ V
32 31 rnex ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∈ V
33 30 mptex ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ∈ V
34 33 rnex ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ∈ V
35 32 34 unex ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ∈ V
36 29 35 unex ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ∈ V
37 ssfii ( ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ∈ V → ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ⊆ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ) )
38 36 37 ax-mp ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ⊆ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) )
39 fvex ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ) ∈ V
40 bastg ( ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ) ∈ V → ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ) ⊆ ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ) ) )
41 39 40 ax-mp ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ) ⊆ ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ) )
42 38 41 sstri ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ⊆ ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ) )
43 eqid ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) = ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } )
44 eqid ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) = ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } )
45 1 2 43 44 ordtprsval ( 𝐾 ∈ Proset → ( ordTop ‘ ) = ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ) ) )
46 3 45 eqtrid ( 𝐾 ∈ Proset → 𝐽 = ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ) ) )
47 42 46 sseqtrrid ( 𝐾 ∈ Proset → ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ⊆ 𝐽 )
48 47 unssbd ( 𝐾 ∈ Proset → ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ⊆ 𝐽 )
49 28 48 syl ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ⊆ 𝐽 )
50 49 unssbd ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ⊆ 𝐽 )
51 breq2 ( 𝑧 = 𝑦 → ( 𝑟 𝑧𝑟 𝑦 ) )
52 51 notbid ( 𝑧 = 𝑦 → ( ¬ 𝑟 𝑧 ↔ ¬ 𝑟 𝑦 ) )
53 52 cbvrabv { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } = { 𝑦𝐵 ∣ ¬ 𝑟 𝑦 }
54 breq1 ( 𝑥 = 𝑟 → ( 𝑥 𝑦𝑟 𝑦 ) )
55 54 notbid ( 𝑥 = 𝑟 → ( ¬ 𝑥 𝑦 ↔ ¬ 𝑟 𝑦 ) )
56 55 rabbidv ( 𝑥 = 𝑟 → { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } = { 𝑦𝐵 ∣ ¬ 𝑟 𝑦 } )
57 56 rspceeqv ( ( 𝑟𝐵 ∧ { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } = { 𝑦𝐵 ∣ ¬ 𝑟 𝑦 } ) → ∃ 𝑥𝐵 { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } = { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } )
58 53 57 mpan2 ( 𝑟𝐵 → ∃ 𝑥𝐵 { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } = { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } )
59 30 rabex { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∈ V
60 eqid ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) = ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } )
61 60 elrnmpt ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∈ V → ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∈ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ↔ ∃ 𝑥𝐵 { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } = { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) )
62 59 61 ax-mp ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∈ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ↔ ∃ 𝑥𝐵 { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } = { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } )
63 58 62 sylibr ( 𝑟𝐵 → { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∈ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) )
64 63 adantl ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∈ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) )
65 50 64 sseldd ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∈ 𝐽 )
66 65 ad2antrr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∈ 𝐽 )
67 49 unssad ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ⊆ 𝐽 )
68 breq1 ( 𝑧 = 𝑦 → ( 𝑧 𝑟𝑦 𝑟 ) )
69 68 notbid ( 𝑧 = 𝑦 → ( ¬ 𝑧 𝑟 ↔ ¬ 𝑦 𝑟 ) )
70 69 cbvrabv { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } = { 𝑦𝐵 ∣ ¬ 𝑦 𝑟 }
71 breq2 ( 𝑥 = 𝑟 → ( 𝑦 𝑥𝑦 𝑟 ) )
72 71 notbid ( 𝑥 = 𝑟 → ( ¬ 𝑦 𝑥 ↔ ¬ 𝑦 𝑟 ) )
73 72 rabbidv ( 𝑥 = 𝑟 → { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } = { 𝑦𝐵 ∣ ¬ 𝑦 𝑟 } )
74 73 rspceeqv ( ( 𝑟𝐵 ∧ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } = { 𝑦𝐵 ∣ ¬ 𝑦 𝑟 } ) → ∃ 𝑥𝐵 { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } = { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } )
75 70 74 mpan2 ( 𝑟𝐵 → ∃ 𝑥𝐵 { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } = { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } )
76 30 rabex { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∈ V
77 eqid ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) = ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } )
78 77 elrnmpt ( { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∈ V → ( { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∈ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ↔ ∃ 𝑥𝐵 { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } = { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) )
79 76 78 ax-mp ( { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∈ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ↔ ∃ 𝑥𝐵 { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } = { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } )
80 75 79 sylibr ( 𝑟𝐵 → { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∈ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) )
81 80 adantl ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∈ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) )
82 67 81 sseldd ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∈ 𝐽 )
83 82 ad2antrr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∈ 𝐽 )
84 simpll ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) )
85 simpr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → ¬ 𝑟𝐴 )
86 84 85 jca ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) )
87 simplrl ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → ∃ 𝑥𝐴 ¬ 𝑟 𝑥 )
88 ssel ( 𝐴𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
89 88 ancrd ( 𝐴𝐵 → ( 𝑥𝐴 → ( 𝑥𝐵𝑥𝐴 ) ) )
90 89 anim1d ( 𝐴𝐵 → ( ( 𝑥𝐴 ∧ ¬ 𝑟 𝑥 ) → ( ( 𝑥𝐵𝑥𝐴 ) ∧ ¬ 𝑟 𝑥 ) ) )
91 90 impl ( ( ( 𝐴𝐵𝑥𝐴 ) ∧ ¬ 𝑟 𝑥 ) → ( ( 𝑥𝐵𝑥𝐴 ) ∧ ¬ 𝑟 𝑥 ) )
92 elin ( 𝑥 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ 𝐴 ) ↔ ( 𝑥 ∈ { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∧ 𝑥𝐴 ) )
93 breq2 ( 𝑧 = 𝑥 → ( 𝑟 𝑧𝑟 𝑥 ) )
94 93 notbid ( 𝑧 = 𝑥 → ( ¬ 𝑟 𝑧 ↔ ¬ 𝑟 𝑥 ) )
95 94 elrab ( 𝑥 ∈ { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ↔ ( 𝑥𝐵 ∧ ¬ 𝑟 𝑥 ) )
96 95 anbi1i ( ( 𝑥 ∈ { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∧ 𝑥𝐴 ) ↔ ( ( 𝑥𝐵 ∧ ¬ 𝑟 𝑥 ) ∧ 𝑥𝐴 ) )
97 an32 ( ( ( 𝑥𝐵 ∧ ¬ 𝑟 𝑥 ) ∧ 𝑥𝐴 ) ↔ ( ( 𝑥𝐵𝑥𝐴 ) ∧ ¬ 𝑟 𝑥 ) )
98 92 96 97 3bitri ( 𝑥 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ 𝐴 ) ↔ ( ( 𝑥𝐵𝑥𝐴 ) ∧ ¬ 𝑟 𝑥 ) )
99 91 98 sylibr ( ( ( 𝐴𝐵𝑥𝐴 ) ∧ ¬ 𝑟 𝑥 ) → 𝑥 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ 𝐴 ) )
100 99 ne0d ( ( ( 𝐴𝐵𝑥𝐴 ) ∧ ¬ 𝑟 𝑥 ) → ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ 𝐴 ) ≠ ∅ )
101 25 100 sylanl1 ( ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) ∧ ¬ 𝑟 𝑥 ) → ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ 𝐴 ) ≠ ∅ )
102 101 r19.29an ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ) → ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ 𝐴 ) ≠ ∅ )
103 86 87 102 syl2anc ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ 𝐴 ) ≠ ∅ )
104 simplrr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → ∃ 𝑦𝐴 ¬ 𝑦 𝑟 )
105 ssel ( 𝐴𝐵 → ( 𝑦𝐴𝑦𝐵 ) )
106 105 ancrd ( 𝐴𝐵 → ( 𝑦𝐴 → ( 𝑦𝐵𝑦𝐴 ) ) )
107 106 anim1d ( 𝐴𝐵 → ( ( 𝑦𝐴 ∧ ¬ 𝑦 𝑟 ) → ( ( 𝑦𝐵𝑦𝐴 ) ∧ ¬ 𝑦 𝑟 ) ) )
108 107 impl ( ( ( 𝐴𝐵𝑦𝐴 ) ∧ ¬ 𝑦 𝑟 ) → ( ( 𝑦𝐵𝑦𝐴 ) ∧ ¬ 𝑦 𝑟 ) )
109 elin ( 𝑦 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∩ 𝐴 ) ↔ ( 𝑦 ∈ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∧ 𝑦𝐴 ) )
110 69 elrab ( 𝑦 ∈ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ↔ ( 𝑦𝐵 ∧ ¬ 𝑦 𝑟 ) )
111 110 anbi1i ( ( 𝑦 ∈ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∧ 𝑦𝐴 ) ↔ ( ( 𝑦𝐵 ∧ ¬ 𝑦 𝑟 ) ∧ 𝑦𝐴 ) )
112 an32 ( ( ( 𝑦𝐵 ∧ ¬ 𝑦 𝑟 ) ∧ 𝑦𝐴 ) ↔ ( ( 𝑦𝐵𝑦𝐴 ) ∧ ¬ 𝑦 𝑟 ) )
113 109 111 112 3bitri ( 𝑦 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∩ 𝐴 ) ↔ ( ( 𝑦𝐵𝑦𝐴 ) ∧ ¬ 𝑦 𝑟 ) )
114 108 113 sylibr ( ( ( 𝐴𝐵𝑦𝐴 ) ∧ ¬ 𝑦 𝑟 ) → 𝑦 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∩ 𝐴 ) )
115 114 ne0d ( ( ( 𝐴𝐵𝑦𝐴 ) ∧ ¬ 𝑦 𝑟 ) → ( { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∩ 𝐴 ) ≠ ∅ )
116 25 115 sylanl1 ( ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) ∧ ¬ 𝑦 𝑟 ) → ( { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∩ 𝐴 ) ≠ ∅ )
117 116 r19.29an ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) → ( { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∩ 𝐴 ) ≠ ∅ )
118 86 104 117 syl2anc ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → ( { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∩ 𝐴 ) ≠ ∅ )
119 1 2 trleile ( ( 𝐾 ∈ Toset ∧ 𝑟𝐵𝑧𝐵 ) → ( 𝑟 𝑧𝑧 𝑟 ) )
120 oran ( ( 𝑟 𝑧𝑧 𝑟 ) ↔ ¬ ( ¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟 ) )
121 119 120 sylib ( ( 𝐾 ∈ Toset ∧ 𝑟𝐵𝑧𝐵 ) → ¬ ( ¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟 ) )
122 121 3expa ( ( ( 𝐾 ∈ Toset ∧ 𝑟𝐵 ) ∧ 𝑧𝐵 ) → ¬ ( ¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟 ) )
123 122 nrexdv ( ( 𝐾 ∈ Toset ∧ 𝑟𝐵 ) → ¬ ∃ 𝑧𝐵 ( ¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟 ) )
124 rabid ( 𝑧 ∈ { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ↔ ( 𝑧𝐵 ∧ ¬ 𝑟 𝑧 ) )
125 rabid ( 𝑧 ∈ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ↔ ( 𝑧𝐵 ∧ ¬ 𝑧 𝑟 ) )
126 124 125 anbi12i ( ( 𝑧 ∈ { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∧ 𝑧 ∈ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) ↔ ( ( 𝑧𝐵 ∧ ¬ 𝑟 𝑧 ) ∧ ( 𝑧𝐵 ∧ ¬ 𝑧 𝑟 ) ) )
127 elin ( 𝑧 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) ↔ ( 𝑧 ∈ { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∧ 𝑧 ∈ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) )
128 anandi ( ( 𝑧𝐵 ∧ ( ¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟 ) ) ↔ ( ( 𝑧𝐵 ∧ ¬ 𝑟 𝑧 ) ∧ ( 𝑧𝐵 ∧ ¬ 𝑧 𝑟 ) ) )
129 126 127 128 3bitr4i ( 𝑧 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) ↔ ( 𝑧𝐵 ∧ ( ¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟 ) ) )
130 129 exbii ( ∃ 𝑧 𝑧 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) ↔ ∃ 𝑧 ( 𝑧𝐵 ∧ ( ¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟 ) ) )
131 nfrab1 𝑧 { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 }
132 nfrab1 𝑧 { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 }
133 131 132 nfin 𝑧 ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } )
134 133 n0f ( ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) )
135 df-rex ( ∃ 𝑧𝐵 ( ¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟 ) ↔ ∃ 𝑧 ( 𝑧𝐵 ∧ ( ¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟 ) ) )
136 130 134 135 3bitr4i ( ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) ≠ ∅ ↔ ∃ 𝑧𝐵 ( ¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟 ) )
137 136 necon1bbii ( ¬ ∃ 𝑧𝐵 ( ¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟 ) ↔ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) = ∅ )
138 123 137 sylib ( ( 𝐾 ∈ Toset ∧ 𝑟𝐵 ) → ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) = ∅ )
139 138 adantlr ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) = ∅ )
140 139 adantr ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) = ∅ )
141 140 ineq1d ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → ( ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) ∩ 𝐴 ) = ( ∅ ∩ 𝐴 ) )
142 0in ( ∅ ∩ 𝐴 ) = ∅
143 141 142 eqtrdi ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → ( ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) ∩ 𝐴 ) = ∅ )
144 143 adantlr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → ( ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) ∩ 𝐴 ) = ∅ )
145 simplr ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → 𝑟𝐵 )
146 simpr ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → ¬ 𝑟𝐴 )
147 vex 𝑟 ∈ V
148 147 snss ( 𝑟𝐵 ↔ { 𝑟 } ⊆ 𝐵 )
149 eldif ( 𝑟 ∈ ( 𝐵𝐴 ) ↔ ( 𝑟𝐵 ∧ ¬ 𝑟𝐴 ) )
150 147 snss ( 𝑟 ∈ ( 𝐵𝐴 ) ↔ { 𝑟 } ⊆ ( 𝐵𝐴 ) )
151 149 150 bitr3i ( ( 𝑟𝐵 ∧ ¬ 𝑟𝐴 ) ↔ { 𝑟 } ⊆ ( 𝐵𝐴 ) )
152 ssconb ( ( { 𝑟 } ⊆ 𝐵𝐴𝐵 ) → ( { 𝑟 } ⊆ ( 𝐵𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) )
153 151 152 syl5bb ( ( { 𝑟 } ⊆ 𝐵𝐴𝐵 ) → ( ( 𝑟𝐵 ∧ ¬ 𝑟𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) )
154 148 153 sylanb ( ( 𝑟𝐵𝐴𝐵 ) → ( ( 𝑟𝐵 ∧ ¬ 𝑟𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) )
155 154 adantl ( ( 𝐾 ∈ Toset ∧ ( 𝑟𝐵𝐴𝐵 ) ) → ( ( 𝑟𝐵 ∧ ¬ 𝑟𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) )
156 155 anass1rs ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → ( ( 𝑟𝐵 ∧ ¬ 𝑟𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) )
157 156 adantr ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → ( ( 𝑟𝐵 ∧ ¬ 𝑟𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) )
158 145 146 157 mpbi2and ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) )
159 10 ad3antrrr ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → 𝐾 ∈ Poset )
160 nfv 𝑧 ( 𝐾 ∈ Poset ∧ 𝑟𝐵 )
161 131 132 nfun 𝑧 ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∪ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } )
162 nfcv 𝑧 ( 𝐵 ∖ { 𝑟 } )
163 ianor ( ¬ ( 𝑟 𝑧𝑧 𝑟 ) ↔ ( ¬ 𝑟 𝑧 ∨ ¬ 𝑧 𝑟 ) )
164 1 2 posrasymb ( ( 𝐾 ∈ Poset ∧ 𝑟𝐵𝑧𝐵 ) → ( ( 𝑟 𝑧𝑧 𝑟 ) ↔ 𝑟 = 𝑧 ) )
165 equcom ( 𝑟 = 𝑧𝑧 = 𝑟 )
166 164 165 bitrdi ( ( 𝐾 ∈ Poset ∧ 𝑟𝐵𝑧𝐵 ) → ( ( 𝑟 𝑧𝑧 𝑟 ) ↔ 𝑧 = 𝑟 ) )
167 166 necon3bbid ( ( 𝐾 ∈ Poset ∧ 𝑟𝐵𝑧𝐵 ) → ( ¬ ( 𝑟 𝑧𝑧 𝑟 ) ↔ 𝑧𝑟 ) )
168 163 167 bitr3id ( ( 𝐾 ∈ Poset ∧ 𝑟𝐵𝑧𝐵 ) → ( ( ¬ 𝑟 𝑧 ∨ ¬ 𝑧 𝑟 ) ↔ 𝑧𝑟 ) )
169 168 3expia ( ( 𝐾 ∈ Poset ∧ 𝑟𝐵 ) → ( 𝑧𝐵 → ( ( ¬ 𝑟 𝑧 ∨ ¬ 𝑧 𝑟 ) ↔ 𝑧𝑟 ) ) )
170 169 pm5.32d ( ( 𝐾 ∈ Poset ∧ 𝑟𝐵 ) → ( ( 𝑧𝐵 ∧ ( ¬ 𝑟 𝑧 ∨ ¬ 𝑧 𝑟 ) ) ↔ ( 𝑧𝐵𝑧𝑟 ) ) )
171 124 125 orbi12i ( ( 𝑧 ∈ { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∨ 𝑧 ∈ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) ↔ ( ( 𝑧𝐵 ∧ ¬ 𝑟 𝑧 ) ∨ ( 𝑧𝐵 ∧ ¬ 𝑧 𝑟 ) ) )
172 elun ( 𝑧 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∪ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) ↔ ( 𝑧 ∈ { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∨ 𝑧 ∈ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) )
173 andi ( ( 𝑧𝐵 ∧ ( ¬ 𝑟 𝑧 ∨ ¬ 𝑧 𝑟 ) ) ↔ ( ( 𝑧𝐵 ∧ ¬ 𝑟 𝑧 ) ∨ ( 𝑧𝐵 ∧ ¬ 𝑧 𝑟 ) ) )
174 171 172 173 3bitr4ri ( ( 𝑧𝐵 ∧ ( ¬ 𝑟 𝑧 ∨ ¬ 𝑧 𝑟 ) ) ↔ 𝑧 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∪ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) )
175 eldifsn ( 𝑧 ∈ ( 𝐵 ∖ { 𝑟 } ) ↔ ( 𝑧𝐵𝑧𝑟 ) )
176 175 bicomi ( ( 𝑧𝐵𝑧𝑟 ) ↔ 𝑧 ∈ ( 𝐵 ∖ { 𝑟 } ) )
177 170 174 176 3bitr3g ( ( 𝐾 ∈ Poset ∧ 𝑟𝐵 ) → ( 𝑧 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∪ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) ↔ 𝑧 ∈ ( 𝐵 ∖ { 𝑟 } ) ) )
178 160 161 162 177 eqrd ( ( 𝐾 ∈ Poset ∧ 𝑟𝐵 ) → ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∪ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) = ( 𝐵 ∖ { 𝑟 } ) )
179 159 145 178 syl2anc ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∪ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) = ( 𝐵 ∖ { 𝑟 } ) )
180 158 179 sseqtrrd ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → 𝐴 ⊆ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∪ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) )
181 180 adantlr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → 𝐴 ⊆ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∪ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) )
182 24 26 66 83 103 118 144 181 nconnsubb ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → ¬ ( 𝐽t 𝐴 ) ∈ Conn )
183 182 anasss ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ∧ ¬ 𝑟𝐴 ) ) → ¬ ( 𝐽t 𝐴 ) ∈ Conn )
184 183 adantllr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ ¬ ∀ 𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) ) ∧ 𝑟𝐵 ) ∧ ( ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ∧ ¬ 𝑟𝐴 ) ) → ¬ ( 𝐽t 𝐴 ) ∈ Conn )
185 rexanali ( ∃ 𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ¬ ∀ 𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) )
186 185 rexbii ( ∃ 𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ∃ 𝑦𝐴 ¬ ∀ 𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) )
187 rexcom ( ∃ 𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ∃ 𝑟𝐵𝑦𝐴 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) )
188 rexnal ( ∃ 𝑦𝐴 ¬ ∀ 𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) ↔ ¬ ∀ 𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) )
189 186 187 188 3bitr3i ( ∃ 𝑟𝐵𝑦𝐴 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ¬ ∀ 𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) )
190 189 rexbii ( ∃ 𝑥𝐴𝑟𝐵𝑦𝐴 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ∃ 𝑥𝐴 ¬ ∀ 𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) )
191 rexcom ( ∃ 𝑥𝐴𝑟𝐵𝑦𝐴 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ∃ 𝑟𝐵𝑥𝐴𝑦𝐴 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) )
192 rexnal ( ∃ 𝑥𝐴 ¬ ∀ 𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) ↔ ¬ ∀ 𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) )
193 190 191 192 3bitr3i ( ∃ 𝑟𝐵𝑥𝐴𝑦𝐴 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ¬ ∀ 𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) )
194 r19.41v ( ∃ 𝑦𝐴 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ( ∃ 𝑦𝐴 ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) )
195 194 rexbii ( ∃ 𝑥𝐴𝑦𝐴 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ∃ 𝑥𝐴 ( ∃ 𝑦𝐴 ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) )
196 r19.41v ( ∃ 𝑥𝐴 ( ∃ 𝑦𝐴 ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ( ∃ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) )
197 reeanv ( ∃ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑟𝑟 𝑦 ) ↔ ( ∃ 𝑥𝐴 𝑥 𝑟 ∧ ∃ 𝑦𝐴 𝑟 𝑦 ) )
198 197 anbi1i ( ( ∃ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ( ( ∃ 𝑥𝐴 𝑥 𝑟 ∧ ∃ 𝑦𝐴 𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) )
199 195 196 198 3bitri ( ∃ 𝑥𝐴𝑦𝐴 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ( ( ∃ 𝑥𝐴 𝑥 𝑟 ∧ ∃ 𝑦𝐴 𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) )
200 199 rexbii ( ∃ 𝑟𝐵𝑥𝐴𝑦𝐴 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ∃ 𝑟𝐵 ( ( ∃ 𝑥𝐴 𝑥 𝑟 ∧ ∃ 𝑦𝐴 𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) )
201 193 200 bitr3i ( ¬ ∀ 𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) ↔ ∃ 𝑟𝐵 ( ( ∃ 𝑥𝐴 𝑥 𝑟 ∧ ∃ 𝑦𝐴 𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) )
202 27 ad2antrr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) → 𝐾 ∈ Toset )
203 25 sselda ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) → 𝑥𝐵 )
204 simpllr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) → 𝑟𝐵 )
205 1 2 trleile ( ( 𝐾 ∈ Toset ∧ 𝑥𝐵𝑟𝐵 ) → ( 𝑥 𝑟𝑟 𝑥 ) )
206 202 203 204 205 syl3anc ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) → ( 𝑥 𝑟𝑟 𝑥 ) )
207 simpr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) → 𝑥𝐴 )
208 simplr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) → ¬ 𝑟𝐴 )
209 nelne2 ( ( 𝑥𝐴 ∧ ¬ 𝑟𝐴 ) → 𝑥𝑟 )
210 207 208 209 syl2anc ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) → 𝑥𝑟 )
211 159 adantr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) → 𝐾 ∈ Poset )
212 1 2 posrasymb ( ( 𝐾 ∈ Poset ∧ 𝑥𝐵𝑟𝐵 ) → ( ( 𝑥 𝑟𝑟 𝑥 ) ↔ 𝑥 = 𝑟 ) )
213 212 necon3bbid ( ( 𝐾 ∈ Poset ∧ 𝑥𝐵𝑟𝐵 ) → ( ¬ ( 𝑥 𝑟𝑟 𝑥 ) ↔ 𝑥𝑟 ) )
214 211 203 204 213 syl3anc ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) → ( ¬ ( 𝑥 𝑟𝑟 𝑥 ) ↔ 𝑥𝑟 ) )
215 210 214 mpbird ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) → ¬ ( 𝑥 𝑟𝑟 𝑥 ) )
216 206 215 jca ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) → ( ( 𝑥 𝑟𝑟 𝑥 ) ∧ ¬ ( 𝑥 𝑟𝑟 𝑥 ) ) )
217 pm5.17 ( ( ( 𝑥 𝑟𝑟 𝑥 ) ∧ ¬ ( 𝑥 𝑟𝑟 𝑥 ) ) ↔ ( 𝑥 𝑟 ↔ ¬ 𝑟 𝑥 ) )
218 216 217 sylib ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) → ( 𝑥 𝑟 ↔ ¬ 𝑟 𝑥 ) )
219 218 rexbidva ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → ( ∃ 𝑥𝐴 𝑥 𝑟 ↔ ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ) )
220 27 ad2antrr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → 𝐾 ∈ Toset )
221 simpllr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → 𝑟𝐵 )
222 25 sselda ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → 𝑦𝐵 )
223 1 2 trleile ( ( 𝐾 ∈ Toset ∧ 𝑟𝐵𝑦𝐵 ) → ( 𝑟 𝑦𝑦 𝑟 ) )
224 220 221 222 223 syl3anc ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → ( 𝑟 𝑦𝑦 𝑟 ) )
225 simpr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → 𝑦𝐴 )
226 simplr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → ¬ 𝑟𝐴 )
227 nelne2 ( ( 𝑦𝐴 ∧ ¬ 𝑟𝐴 ) → 𝑦𝑟 )
228 225 226 227 syl2anc ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → 𝑦𝑟 )
229 228 necomd ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → 𝑟𝑦 )
230 159 adantr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → 𝐾 ∈ Poset )
231 1 2 posrasymb ( ( 𝐾 ∈ Poset ∧ 𝑟𝐵𝑦𝐵 ) → ( ( 𝑟 𝑦𝑦 𝑟 ) ↔ 𝑟 = 𝑦 ) )
232 231 necon3bbid ( ( 𝐾 ∈ Poset ∧ 𝑟𝐵𝑦𝐵 ) → ( ¬ ( 𝑟 𝑦𝑦 𝑟 ) ↔ 𝑟𝑦 ) )
233 230 221 222 232 syl3anc ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → ( ¬ ( 𝑟 𝑦𝑦 𝑟 ) ↔ 𝑟𝑦 ) )
234 229 233 mpbird ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → ¬ ( 𝑟 𝑦𝑦 𝑟 ) )
235 224 234 jca ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → ( ( 𝑟 𝑦𝑦 𝑟 ) ∧ ¬ ( 𝑟 𝑦𝑦 𝑟 ) ) )
236 pm5.17 ( ( ( 𝑟 𝑦𝑦 𝑟 ) ∧ ¬ ( 𝑟 𝑦𝑦 𝑟 ) ) ↔ ( 𝑟 𝑦 ↔ ¬ 𝑦 𝑟 ) )
237 235 236 sylib ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → ( 𝑟 𝑦 ↔ ¬ 𝑦 𝑟 ) )
238 237 rexbidva ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → ( ∃ 𝑦𝐴 𝑟 𝑦 ↔ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) )
239 219 238 anbi12d ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → ( ( ∃ 𝑥𝐴 𝑥 𝑟 ∧ ∃ 𝑦𝐴 𝑟 𝑦 ) ↔ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) )
240 239 ex ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → ( ¬ 𝑟𝐴 → ( ( ∃ 𝑥𝐴 𝑥 𝑟 ∧ ∃ 𝑦𝐴 𝑟 𝑦 ) ↔ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ) )
241 240 pm5.32rd ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → ( ( ( ∃ 𝑥𝐴 𝑥 𝑟 ∧ ∃ 𝑦𝐴 𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ( ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ∧ ¬ 𝑟𝐴 ) ) )
242 241 rexbidva ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) → ( ∃ 𝑟𝐵 ( ( ∃ 𝑥𝐴 𝑥 𝑟 ∧ ∃ 𝑦𝐴 𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ∃ 𝑟𝐵 ( ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ∧ ¬ 𝑟𝐴 ) ) )
243 201 242 syl5bb ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) → ( ¬ ∀ 𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) ↔ ∃ 𝑟𝐵 ( ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ∧ ¬ 𝑟𝐴 ) ) )
244 243 biimpa ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ ¬ ∀ 𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) ) → ∃ 𝑟𝐵 ( ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ∧ ¬ 𝑟𝐴 ) )
245 9 184 244 r19.29af ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ ¬ ∀ 𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) ) → ¬ ( 𝐽t 𝐴 ) ∈ Conn )
246 245 ex ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) → ( ¬ ∀ 𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) → ¬ ( 𝐽t 𝐴 ) ∈ Conn ) )
247 246 con4d ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) → ( ( 𝐽t 𝐴 ) ∈ Conn → ∀ 𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) ) )