| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordtconn.x | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | ordtconn.l | ⊢  ≤   =  ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) ) | 
						
							| 3 |  | ordtconn.j | ⊢ 𝐽  =  ( ordTop ‘  ≤  ) | 
						
							| 4 |  | nfv | ⊢ Ⅎ 𝑟 ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 ) | 
						
							| 5 |  | nfcv | ⊢ Ⅎ 𝑟 𝐴 | 
						
							| 6 |  | nfra2w | ⊢ Ⅎ 𝑟 ∀ 𝑦  ∈  𝐴 ∀ 𝑟  ∈  𝐵 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  →  𝑟  ∈  𝐴 ) | 
						
							| 7 | 5 6 | nfralw | ⊢ Ⅎ 𝑟 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ∀ 𝑟  ∈  𝐵 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  →  𝑟  ∈  𝐴 ) | 
						
							| 8 | 7 | nfn | ⊢ Ⅎ 𝑟 ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ∀ 𝑟  ∈  𝐵 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  →  𝑟  ∈  𝐴 ) | 
						
							| 9 | 4 8 | nfan | ⊢ Ⅎ 𝑟 ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ∀ 𝑟  ∈  𝐵 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  →  𝑟  ∈  𝐴 ) ) | 
						
							| 10 |  | tospos | ⊢ ( 𝐾  ∈  Toset  →  𝐾  ∈  Poset ) | 
						
							| 11 |  | posprs | ⊢ ( 𝐾  ∈  Poset  →  𝐾  ∈   Proset  ) | 
						
							| 12 |  | fvex | ⊢ ( le ‘ 𝐾 )  ∈  V | 
						
							| 13 | 12 | inex1 | ⊢ ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) )  ∈  V | 
						
							| 14 | 2 13 | eqeltri | ⊢  ≤   ∈  V | 
						
							| 15 |  | eqid | ⊢ dom   ≤   =  dom   ≤ | 
						
							| 16 | 15 | ordttopon | ⊢ (  ≤   ∈  V  →  ( ordTop ‘  ≤  )  ∈  ( TopOn ‘ dom   ≤  ) ) | 
						
							| 17 | 14 16 | ax-mp | ⊢ ( ordTop ‘  ≤  )  ∈  ( TopOn ‘ dom   ≤  ) | 
						
							| 18 | 1 2 | prsdm | ⊢ ( 𝐾  ∈   Proset   →  dom   ≤   =  𝐵 ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( 𝐾  ∈   Proset   →  ( TopOn ‘ dom   ≤  )  =  ( TopOn ‘ 𝐵 ) ) | 
						
							| 20 | 17 19 | eleqtrid | ⊢ ( 𝐾  ∈   Proset   →  ( ordTop ‘  ≤  )  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 21 | 3 20 | eqeltrid | ⊢ ( 𝐾  ∈   Proset   →  𝐽  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 22 | 10 11 21 | 3syl | ⊢ ( 𝐾  ∈  Toset  →  𝐽  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 23 | 22 | ad3antrrr | ⊢ ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  →  𝐽  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 24 | 23 | adantlr | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ( ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥  ∧  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 ) )  ∧  ¬  𝑟  ∈  𝐴 )  →  𝐽  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 25 |  | simpllr | ⊢ ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  →  𝐴  ⊆  𝐵 ) | 
						
							| 26 | 25 | adantlr | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ( ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥  ∧  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 ) )  ∧  ¬  𝑟  ∈  𝐴 )  →  𝐴  ⊆  𝐵 ) | 
						
							| 27 |  | simpll | ⊢ ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  →  𝐾  ∈  Toset ) | 
						
							| 28 |  | snex | ⊢ { 𝐵 }  ∈  V | 
						
							| 29 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 30 | 29 | mptex | ⊢ ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∈  V | 
						
							| 31 | 30 | rnex | ⊢ ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∈  V | 
						
							| 32 | 29 | mptex | ⊢ ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } )  ∈  V | 
						
							| 33 | 32 | rnex | ⊢ ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } )  ∈  V | 
						
							| 34 | 31 33 | unex | ⊢ ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) )  ∈  V | 
						
							| 35 | 28 34 | unex | ⊢ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) )  ∈  V | 
						
							| 36 |  | ssfii | ⊢ ( ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) )  ∈  V  →  ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) )  ⊆  ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) ) ) ) | 
						
							| 37 | 35 36 | ax-mp | ⊢ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) )  ⊆  ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) ) ) | 
						
							| 38 |  | fvex | ⊢ ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) ) )  ∈  V | 
						
							| 39 |  | bastg | ⊢ ( ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) ) )  ∈  V  →  ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) ) )  ⊆  ( topGen ‘ ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) ) ) ) ) | 
						
							| 40 | 38 39 | ax-mp | ⊢ ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) ) )  ⊆  ( topGen ‘ ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) ) ) ) | 
						
							| 41 | 37 40 | sstri | ⊢ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) )  ⊆  ( topGen ‘ ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) ) ) ) | 
						
							| 42 |  | eqid | ⊢ ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  =  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } ) | 
						
							| 43 |  | eqid | ⊢ ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } )  =  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) | 
						
							| 44 | 1 2 42 43 | ordtprsval | ⊢ ( 𝐾  ∈   Proset   →  ( ordTop ‘  ≤  )  =  ( topGen ‘ ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) ) ) ) ) | 
						
							| 45 | 3 44 | eqtrid | ⊢ ( 𝐾  ∈   Proset   →  𝐽  =  ( topGen ‘ ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) ) ) ) ) | 
						
							| 46 | 41 45 | sseqtrrid | ⊢ ( 𝐾  ∈   Proset   →  ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) )  ⊆  𝐽 ) | 
						
							| 47 | 46 | unssbd | ⊢ ( 𝐾  ∈   Proset   →  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) )  ⊆  𝐽 ) | 
						
							| 48 | 27 10 11 47 | 4syl | ⊢ ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  →  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) )  ⊆  𝐽 ) | 
						
							| 49 | 48 | unssbd | ⊢ ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  →  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } )  ⊆  𝐽 ) | 
						
							| 50 |  | breq2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑟  ≤  𝑧  ↔  𝑟  ≤  𝑦 ) ) | 
						
							| 51 | 50 | notbid | ⊢ ( 𝑧  =  𝑦  →  ( ¬  𝑟  ≤  𝑧  ↔  ¬  𝑟  ≤  𝑦 ) ) | 
						
							| 52 | 51 | cbvrabv | ⊢ { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  =  { 𝑦  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑦 } | 
						
							| 53 |  | breq1 | ⊢ ( 𝑥  =  𝑟  →  ( 𝑥  ≤  𝑦  ↔  𝑟  ≤  𝑦 ) ) | 
						
							| 54 | 53 | notbid | ⊢ ( 𝑥  =  𝑟  →  ( ¬  𝑥  ≤  𝑦  ↔  ¬  𝑟  ≤  𝑦 ) ) | 
						
							| 55 | 54 | rabbidv | ⊢ ( 𝑥  =  𝑟  →  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 }  =  { 𝑦  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑦 } ) | 
						
							| 56 | 55 | rspceeqv | ⊢ ( ( 𝑟  ∈  𝐵  ∧  { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  =  { 𝑦  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑦 } )  →  ∃ 𝑥  ∈  𝐵 { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  =  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) | 
						
							| 57 | 52 56 | mpan2 | ⊢ ( 𝑟  ∈  𝐵  →  ∃ 𝑥  ∈  𝐵 { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  =  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) | 
						
							| 58 | 29 | rabex | ⊢ { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∈  V | 
						
							| 59 |  | eqid | ⊢ ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } )  =  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) | 
						
							| 60 | 59 | elrnmpt | ⊢ ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∈  V  →  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∈  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } )  ↔  ∃ 𝑥  ∈  𝐵 { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  =  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) | 
						
							| 61 | 58 60 | ax-mp | ⊢ ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∈  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } )  ↔  ∃ 𝑥  ∈  𝐵 { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  =  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) | 
						
							| 62 | 57 61 | sylibr | ⊢ ( 𝑟  ∈  𝐵  →  { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∈  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  →  { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∈  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) | 
						
							| 64 | 49 63 | sseldd | ⊢ ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  →  { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∈  𝐽 ) | 
						
							| 65 | 64 | ad2antrr | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ( ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥  ∧  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 ) )  ∧  ¬  𝑟  ∈  𝐴 )  →  { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∈  𝐽 ) | 
						
							| 66 | 48 | unssad | ⊢ ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  →  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ⊆  𝐽 ) | 
						
							| 67 |  | breq1 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑧  ≤  𝑟  ↔  𝑦  ≤  𝑟 ) ) | 
						
							| 68 | 67 | notbid | ⊢ ( 𝑧  =  𝑦  →  ( ¬  𝑧  ≤  𝑟  ↔  ¬  𝑦  ≤  𝑟 ) ) | 
						
							| 69 | 68 | cbvrabv | ⊢ { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  =  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑟 } | 
						
							| 70 |  | breq2 | ⊢ ( 𝑥  =  𝑟  →  ( 𝑦  ≤  𝑥  ↔  𝑦  ≤  𝑟 ) ) | 
						
							| 71 | 70 | notbid | ⊢ ( 𝑥  =  𝑟  →  ( ¬  𝑦  ≤  𝑥  ↔  ¬  𝑦  ≤  𝑟 ) ) | 
						
							| 72 | 71 | rabbidv | ⊢ ( 𝑥  =  𝑟  →  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 }  =  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑟 } ) | 
						
							| 73 | 72 | rspceeqv | ⊢ ( ( 𝑟  ∈  𝐵  ∧  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  =  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑟 } )  →  ∃ 𝑥  ∈  𝐵 { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  =  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } ) | 
						
							| 74 | 69 73 | mpan2 | ⊢ ( 𝑟  ∈  𝐵  →  ∃ 𝑥  ∈  𝐵 { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  =  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } ) | 
						
							| 75 | 29 | rabex | ⊢ { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  ∈  V | 
						
							| 76 |  | eqid | ⊢ ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  =  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } ) | 
						
							| 77 | 76 | elrnmpt | ⊢ ( { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  ∈  V  →  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  ∈  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ↔  ∃ 𝑥  ∈  𝐵 { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  =  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } ) ) | 
						
							| 78 | 75 77 | ax-mp | ⊢ ( { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  ∈  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ↔  ∃ 𝑥  ∈  𝐵 { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  =  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } ) | 
						
							| 79 | 74 78 | sylibr | ⊢ ( 𝑟  ∈  𝐵  →  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  ∈  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } ) ) | 
						
							| 80 | 79 | adantl | ⊢ ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  →  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  ∈  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } ) ) | 
						
							| 81 | 66 80 | sseldd | ⊢ ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  →  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  ∈  𝐽 ) | 
						
							| 82 | 81 | ad2antrr | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ( ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥  ∧  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 ) )  ∧  ¬  𝑟  ∈  𝐴 )  →  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  ∈  𝐽 ) | 
						
							| 83 |  | simpll | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ( ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥  ∧  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 ) )  ∧  ¬  𝑟  ∈  𝐴 )  →  ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 ) ) | 
						
							| 84 |  | simpr | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ( ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥  ∧  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 ) )  ∧  ¬  𝑟  ∈  𝐴 )  →  ¬  𝑟  ∈  𝐴 ) | 
						
							| 85 | 83 84 | jca | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ( ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥  ∧  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 ) )  ∧  ¬  𝑟  ∈  𝐴 )  →  ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 ) ) | 
						
							| 86 |  | simplrl | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ( ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥  ∧  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 ) )  ∧  ¬  𝑟  ∈  𝐴 )  →  ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥 ) | 
						
							| 87 |  | ssel | ⊢ ( 𝐴  ⊆  𝐵  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 ) ) | 
						
							| 88 | 87 | ancrd | ⊢ ( 𝐴  ⊆  𝐵  →  ( 𝑥  ∈  𝐴  →  ( 𝑥  ∈  𝐵  ∧  𝑥  ∈  𝐴 ) ) ) | 
						
							| 89 | 88 | anim1d | ⊢ ( 𝐴  ⊆  𝐵  →  ( ( 𝑥  ∈  𝐴  ∧  ¬  𝑟  ≤  𝑥 )  →  ( ( 𝑥  ∈  𝐵  ∧  𝑥  ∈  𝐴 )  ∧  ¬  𝑟  ≤  𝑥 ) ) ) | 
						
							| 90 | 89 | impl | ⊢ ( ( ( 𝐴  ⊆  𝐵  ∧  𝑥  ∈  𝐴 )  ∧  ¬  𝑟  ≤  𝑥 )  →  ( ( 𝑥  ∈  𝐵  ∧  𝑥  ∈  𝐴 )  ∧  ¬  𝑟  ≤  𝑥 ) ) | 
						
							| 91 |  | elin | ⊢ ( 𝑥  ∈  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∩  𝐴 )  ↔  ( 𝑥  ∈  { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 92 |  | breq2 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑟  ≤  𝑧  ↔  𝑟  ≤  𝑥 ) ) | 
						
							| 93 | 92 | notbid | ⊢ ( 𝑧  =  𝑥  →  ( ¬  𝑟  ≤  𝑧  ↔  ¬  𝑟  ≤  𝑥 ) ) | 
						
							| 94 | 93 | elrab | ⊢ ( 𝑥  ∈  { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ↔  ( 𝑥  ∈  𝐵  ∧  ¬  𝑟  ≤  𝑥 ) ) | 
						
							| 95 | 94 | anbi1i | ⊢ ( ( 𝑥  ∈  { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∧  𝑥  ∈  𝐴 )  ↔  ( ( 𝑥  ∈  𝐵  ∧  ¬  𝑟  ≤  𝑥 )  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 96 |  | an32 | ⊢ ( ( ( 𝑥  ∈  𝐵  ∧  ¬  𝑟  ≤  𝑥 )  ∧  𝑥  ∈  𝐴 )  ↔  ( ( 𝑥  ∈  𝐵  ∧  𝑥  ∈  𝐴 )  ∧  ¬  𝑟  ≤  𝑥 ) ) | 
						
							| 97 | 91 95 96 | 3bitri | ⊢ ( 𝑥  ∈  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∩  𝐴 )  ↔  ( ( 𝑥  ∈  𝐵  ∧  𝑥  ∈  𝐴 )  ∧  ¬  𝑟  ≤  𝑥 ) ) | 
						
							| 98 | 90 97 | sylibr | ⊢ ( ( ( 𝐴  ⊆  𝐵  ∧  𝑥  ∈  𝐴 )  ∧  ¬  𝑟  ≤  𝑥 )  →  𝑥  ∈  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∩  𝐴 ) ) | 
						
							| 99 | 98 | ne0d | ⊢ ( ( ( 𝐴  ⊆  𝐵  ∧  𝑥  ∈  𝐴 )  ∧  ¬  𝑟  ≤  𝑥 )  →  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∩  𝐴 )  ≠  ∅ ) | 
						
							| 100 | 25 99 | sylanl1 | ⊢ ( ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  ∧  ¬  𝑟  ≤  𝑥 )  →  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∩  𝐴 )  ≠  ∅ ) | 
						
							| 101 | 100 | r19.29an | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥 )  →  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∩  𝐴 )  ≠  ∅ ) | 
						
							| 102 | 85 86 101 | syl2anc | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ( ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥  ∧  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 ) )  ∧  ¬  𝑟  ∈  𝐴 )  →  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∩  𝐴 )  ≠  ∅ ) | 
						
							| 103 |  | simplrr | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ( ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥  ∧  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 ) )  ∧  ¬  𝑟  ∈  𝐴 )  →  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 ) | 
						
							| 104 |  | ssel | ⊢ ( 𝐴  ⊆  𝐵  →  ( 𝑦  ∈  𝐴  →  𝑦  ∈  𝐵 ) ) | 
						
							| 105 | 104 | ancrd | ⊢ ( 𝐴  ⊆  𝐵  →  ( 𝑦  ∈  𝐴  →  ( 𝑦  ∈  𝐵  ∧  𝑦  ∈  𝐴 ) ) ) | 
						
							| 106 | 105 | anim1d | ⊢ ( 𝐴  ⊆  𝐵  →  ( ( 𝑦  ∈  𝐴  ∧  ¬  𝑦  ≤  𝑟 )  →  ( ( 𝑦  ∈  𝐵  ∧  𝑦  ∈  𝐴 )  ∧  ¬  𝑦  ≤  𝑟 ) ) ) | 
						
							| 107 | 106 | impl | ⊢ ( ( ( 𝐴  ⊆  𝐵  ∧  𝑦  ∈  𝐴 )  ∧  ¬  𝑦  ≤  𝑟 )  →  ( ( 𝑦  ∈  𝐵  ∧  𝑦  ∈  𝐴 )  ∧  ¬  𝑦  ≤  𝑟 ) ) | 
						
							| 108 |  | elin | ⊢ ( 𝑦  ∈  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  ∩  𝐴 )  ↔  ( 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  ∧  𝑦  ∈  𝐴 ) ) | 
						
							| 109 | 68 | elrab | ⊢ ( 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  ↔  ( 𝑦  ∈  𝐵  ∧  ¬  𝑦  ≤  𝑟 ) ) | 
						
							| 110 | 109 | anbi1i | ⊢ ( ( 𝑦  ∈  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  ∧  𝑦  ∈  𝐴 )  ↔  ( ( 𝑦  ∈  𝐵  ∧  ¬  𝑦  ≤  𝑟 )  ∧  𝑦  ∈  𝐴 ) ) | 
						
							| 111 |  | an32 | ⊢ ( ( ( 𝑦  ∈  𝐵  ∧  ¬  𝑦  ≤  𝑟 )  ∧  𝑦  ∈  𝐴 )  ↔  ( ( 𝑦  ∈  𝐵  ∧  𝑦  ∈  𝐴 )  ∧  ¬  𝑦  ≤  𝑟 ) ) | 
						
							| 112 | 108 110 111 | 3bitri | ⊢ ( 𝑦  ∈  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  ∩  𝐴 )  ↔  ( ( 𝑦  ∈  𝐵  ∧  𝑦  ∈  𝐴 )  ∧  ¬  𝑦  ≤  𝑟 ) ) | 
						
							| 113 | 107 112 | sylibr | ⊢ ( ( ( 𝐴  ⊆  𝐵  ∧  𝑦  ∈  𝐴 )  ∧  ¬  𝑦  ≤  𝑟 )  →  𝑦  ∈  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  ∩  𝐴 ) ) | 
						
							| 114 | 113 | ne0d | ⊢ ( ( ( 𝐴  ⊆  𝐵  ∧  𝑦  ∈  𝐴 )  ∧  ¬  𝑦  ≤  𝑟 )  →  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  ∩  𝐴 )  ≠  ∅ ) | 
						
							| 115 | 25 114 | sylanl1 | ⊢ ( ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  ∧  ¬  𝑦  ≤  𝑟 )  →  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  ∩  𝐴 )  ≠  ∅ ) | 
						
							| 116 | 115 | r19.29an | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 )  →  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  ∩  𝐴 )  ≠  ∅ ) | 
						
							| 117 | 85 103 116 | syl2anc | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ( ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥  ∧  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 ) )  ∧  ¬  𝑟  ∈  𝐴 )  →  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  ∩  𝐴 )  ≠  ∅ ) | 
						
							| 118 | 1 2 | trleile | ⊢ ( ( 𝐾  ∈  Toset  ∧  𝑟  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( 𝑟  ≤  𝑧  ∨  𝑧  ≤  𝑟 ) ) | 
						
							| 119 |  | oran | ⊢ ( ( 𝑟  ≤  𝑧  ∨  𝑧  ≤  𝑟 )  ↔  ¬  ( ¬  𝑟  ≤  𝑧  ∧  ¬  𝑧  ≤  𝑟 ) ) | 
						
							| 120 | 118 119 | sylib | ⊢ ( ( 𝐾  ∈  Toset  ∧  𝑟  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ¬  ( ¬  𝑟  ≤  𝑧  ∧  ¬  𝑧  ≤  𝑟 ) ) | 
						
							| 121 | 120 | 3expa | ⊢ ( ( ( 𝐾  ∈  Toset  ∧  𝑟  ∈  𝐵 )  ∧  𝑧  ∈  𝐵 )  →  ¬  ( ¬  𝑟  ≤  𝑧  ∧  ¬  𝑧  ≤  𝑟 ) ) | 
						
							| 122 | 121 | nrexdv | ⊢ ( ( 𝐾  ∈  Toset  ∧  𝑟  ∈  𝐵 )  →  ¬  ∃ 𝑧  ∈  𝐵 ( ¬  𝑟  ≤  𝑧  ∧  ¬  𝑧  ≤  𝑟 ) ) | 
						
							| 123 |  | rabid | ⊢ ( 𝑧  ∈  { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ↔  ( 𝑧  ∈  𝐵  ∧  ¬  𝑟  ≤  𝑧 ) ) | 
						
							| 124 |  | rabid | ⊢ ( 𝑧  ∈  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 }  ↔  ( 𝑧  ∈  𝐵  ∧  ¬  𝑧  ≤  𝑟 ) ) | 
						
							| 125 | 123 124 | anbi12i | ⊢ ( ( 𝑧  ∈  { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∧  𝑧  ∈  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } )  ↔  ( ( 𝑧  ∈  𝐵  ∧  ¬  𝑟  ≤  𝑧 )  ∧  ( 𝑧  ∈  𝐵  ∧  ¬  𝑧  ≤  𝑟 ) ) ) | 
						
							| 126 |  | elin | ⊢ ( 𝑧  ∈  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∩  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } )  ↔  ( 𝑧  ∈  { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∧  𝑧  ∈  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } ) ) | 
						
							| 127 |  | anandi | ⊢ ( ( 𝑧  ∈  𝐵  ∧  ( ¬  𝑟  ≤  𝑧  ∧  ¬  𝑧  ≤  𝑟 ) )  ↔  ( ( 𝑧  ∈  𝐵  ∧  ¬  𝑟  ≤  𝑧 )  ∧  ( 𝑧  ∈  𝐵  ∧  ¬  𝑧  ≤  𝑟 ) ) ) | 
						
							| 128 | 125 126 127 | 3bitr4i | ⊢ ( 𝑧  ∈  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∩  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } )  ↔  ( 𝑧  ∈  𝐵  ∧  ( ¬  𝑟  ≤  𝑧  ∧  ¬  𝑧  ≤  𝑟 ) ) ) | 
						
							| 129 | 128 | exbii | ⊢ ( ∃ 𝑧 𝑧  ∈  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∩  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } )  ↔  ∃ 𝑧 ( 𝑧  ∈  𝐵  ∧  ( ¬  𝑟  ≤  𝑧  ∧  ¬  𝑧  ≤  𝑟 ) ) ) | 
						
							| 130 |  | nfrab1 | ⊢ Ⅎ 𝑧 { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 } | 
						
							| 131 |  | nfrab1 | ⊢ Ⅎ 𝑧 { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } | 
						
							| 132 | 130 131 | nfin | ⊢ Ⅎ 𝑧 ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∩  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } ) | 
						
							| 133 | 132 | n0f | ⊢ ( ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∩  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } )  ≠  ∅  ↔  ∃ 𝑧 𝑧  ∈  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∩  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } ) ) | 
						
							| 134 |  | df-rex | ⊢ ( ∃ 𝑧  ∈  𝐵 ( ¬  𝑟  ≤  𝑧  ∧  ¬  𝑧  ≤  𝑟 )  ↔  ∃ 𝑧 ( 𝑧  ∈  𝐵  ∧  ( ¬  𝑟  ≤  𝑧  ∧  ¬  𝑧  ≤  𝑟 ) ) ) | 
						
							| 135 | 129 133 134 | 3bitr4i | ⊢ ( ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∩  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } )  ≠  ∅  ↔  ∃ 𝑧  ∈  𝐵 ( ¬  𝑟  ≤  𝑧  ∧  ¬  𝑧  ≤  𝑟 ) ) | 
						
							| 136 | 135 | necon1bbii | ⊢ ( ¬  ∃ 𝑧  ∈  𝐵 ( ¬  𝑟  ≤  𝑧  ∧  ¬  𝑧  ≤  𝑟 )  ↔  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∩  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } )  =  ∅ ) | 
						
							| 137 | 122 136 | sylib | ⊢ ( ( 𝐾  ∈  Toset  ∧  𝑟  ∈  𝐵 )  →  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∩  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } )  =  ∅ ) | 
						
							| 138 | 137 | adantlr | ⊢ ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  →  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∩  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } )  =  ∅ ) | 
						
							| 139 | 138 | adantr | ⊢ ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  →  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∩  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } )  =  ∅ ) | 
						
							| 140 | 139 | ineq1d | ⊢ ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  →  ( ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∩  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } )  ∩  𝐴 )  =  ( ∅  ∩  𝐴 ) ) | 
						
							| 141 |  | 0in | ⊢ ( ∅  ∩  𝐴 )  =  ∅ | 
						
							| 142 | 140 141 | eqtrdi | ⊢ ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  →  ( ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∩  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } )  ∩  𝐴 )  =  ∅ ) | 
						
							| 143 | 142 | adantlr | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ( ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥  ∧  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 ) )  ∧  ¬  𝑟  ∈  𝐴 )  →  ( ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∩  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } )  ∩  𝐴 )  =  ∅ ) | 
						
							| 144 |  | simplr | ⊢ ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  →  𝑟  ∈  𝐵 ) | 
						
							| 145 |  | simpr | ⊢ ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  →  ¬  𝑟  ∈  𝐴 ) | 
						
							| 146 |  | vex | ⊢ 𝑟  ∈  V | 
						
							| 147 | 146 | snss | ⊢ ( 𝑟  ∈  𝐵  ↔  { 𝑟 }  ⊆  𝐵 ) | 
						
							| 148 |  | eldif | ⊢ ( 𝑟  ∈  ( 𝐵  ∖  𝐴 )  ↔  ( 𝑟  ∈  𝐵  ∧  ¬  𝑟  ∈  𝐴 ) ) | 
						
							| 149 | 146 | snss | ⊢ ( 𝑟  ∈  ( 𝐵  ∖  𝐴 )  ↔  { 𝑟 }  ⊆  ( 𝐵  ∖  𝐴 ) ) | 
						
							| 150 | 148 149 | bitr3i | ⊢ ( ( 𝑟  ∈  𝐵  ∧  ¬  𝑟  ∈  𝐴 )  ↔  { 𝑟 }  ⊆  ( 𝐵  ∖  𝐴 ) ) | 
						
							| 151 |  | ssconb | ⊢ ( ( { 𝑟 }  ⊆  𝐵  ∧  𝐴  ⊆  𝐵 )  →  ( { 𝑟 }  ⊆  ( 𝐵  ∖  𝐴 )  ↔  𝐴  ⊆  ( 𝐵  ∖  { 𝑟 } ) ) ) | 
						
							| 152 | 150 151 | bitrid | ⊢ ( ( { 𝑟 }  ⊆  𝐵  ∧  𝐴  ⊆  𝐵 )  →  ( ( 𝑟  ∈  𝐵  ∧  ¬  𝑟  ∈  𝐴 )  ↔  𝐴  ⊆  ( 𝐵  ∖  { 𝑟 } ) ) ) | 
						
							| 153 | 147 152 | sylanb | ⊢ ( ( 𝑟  ∈  𝐵  ∧  𝐴  ⊆  𝐵 )  →  ( ( 𝑟  ∈  𝐵  ∧  ¬  𝑟  ∈  𝐴 )  ↔  𝐴  ⊆  ( 𝐵  ∖  { 𝑟 } ) ) ) | 
						
							| 154 | 153 | adantl | ⊢ ( ( 𝐾  ∈  Toset  ∧  ( 𝑟  ∈  𝐵  ∧  𝐴  ⊆  𝐵 ) )  →  ( ( 𝑟  ∈  𝐵  ∧  ¬  𝑟  ∈  𝐴 )  ↔  𝐴  ⊆  ( 𝐵  ∖  { 𝑟 } ) ) ) | 
						
							| 155 | 154 | anass1rs | ⊢ ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  →  ( ( 𝑟  ∈  𝐵  ∧  ¬  𝑟  ∈  𝐴 )  ↔  𝐴  ⊆  ( 𝐵  ∖  { 𝑟 } ) ) ) | 
						
							| 156 | 155 | adantr | ⊢ ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  →  ( ( 𝑟  ∈  𝐵  ∧  ¬  𝑟  ∈  𝐴 )  ↔  𝐴  ⊆  ( 𝐵  ∖  { 𝑟 } ) ) ) | 
						
							| 157 | 144 145 156 | mpbi2and | ⊢ ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  →  𝐴  ⊆  ( 𝐵  ∖  { 𝑟 } ) ) | 
						
							| 158 | 10 | ad3antrrr | ⊢ ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  →  𝐾  ∈  Poset ) | 
						
							| 159 |  | nfv | ⊢ Ⅎ 𝑧 ( 𝐾  ∈  Poset  ∧  𝑟  ∈  𝐵 ) | 
						
							| 160 | 130 131 | nfun | ⊢ Ⅎ 𝑧 ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∪  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } ) | 
						
							| 161 |  | nfcv | ⊢ Ⅎ 𝑧 ( 𝐵  ∖  { 𝑟 } ) | 
						
							| 162 |  | ianor | ⊢ ( ¬  ( 𝑟  ≤  𝑧  ∧  𝑧  ≤  𝑟 )  ↔  ( ¬  𝑟  ≤  𝑧  ∨  ¬  𝑧  ≤  𝑟 ) ) | 
						
							| 163 | 1 2 | posrasymb | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑟  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑟  ≤  𝑧  ∧  𝑧  ≤  𝑟 )  ↔  𝑟  =  𝑧 ) ) | 
						
							| 164 |  | equcom | ⊢ ( 𝑟  =  𝑧  ↔  𝑧  =  𝑟 ) | 
						
							| 165 | 163 164 | bitrdi | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑟  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑟  ≤  𝑧  ∧  𝑧  ≤  𝑟 )  ↔  𝑧  =  𝑟 ) ) | 
						
							| 166 | 165 | necon3bbid | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑟  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ¬  ( 𝑟  ≤  𝑧  ∧  𝑧  ≤  𝑟 )  ↔  𝑧  ≠  𝑟 ) ) | 
						
							| 167 | 162 166 | bitr3id | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑟  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( ¬  𝑟  ≤  𝑧  ∨  ¬  𝑧  ≤  𝑟 )  ↔  𝑧  ≠  𝑟 ) ) | 
						
							| 168 | 167 | 3expia | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑟  ∈  𝐵 )  →  ( 𝑧  ∈  𝐵  →  ( ( ¬  𝑟  ≤  𝑧  ∨  ¬  𝑧  ≤  𝑟 )  ↔  𝑧  ≠  𝑟 ) ) ) | 
						
							| 169 | 168 | pm5.32d | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑟  ∈  𝐵 )  →  ( ( 𝑧  ∈  𝐵  ∧  ( ¬  𝑟  ≤  𝑧  ∨  ¬  𝑧  ≤  𝑟 ) )  ↔  ( 𝑧  ∈  𝐵  ∧  𝑧  ≠  𝑟 ) ) ) | 
						
							| 170 | 123 124 | orbi12i | ⊢ ( ( 𝑧  ∈  { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∨  𝑧  ∈  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } )  ↔  ( ( 𝑧  ∈  𝐵  ∧  ¬  𝑟  ≤  𝑧 )  ∨  ( 𝑧  ∈  𝐵  ∧  ¬  𝑧  ≤  𝑟 ) ) ) | 
						
							| 171 |  | elun | ⊢ ( 𝑧  ∈  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∪  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } )  ↔  ( 𝑧  ∈  { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∨  𝑧  ∈  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } ) ) | 
						
							| 172 |  | andi | ⊢ ( ( 𝑧  ∈  𝐵  ∧  ( ¬  𝑟  ≤  𝑧  ∨  ¬  𝑧  ≤  𝑟 ) )  ↔  ( ( 𝑧  ∈  𝐵  ∧  ¬  𝑟  ≤  𝑧 )  ∨  ( 𝑧  ∈  𝐵  ∧  ¬  𝑧  ≤  𝑟 ) ) ) | 
						
							| 173 | 170 171 172 | 3bitr4ri | ⊢ ( ( 𝑧  ∈  𝐵  ∧  ( ¬  𝑟  ≤  𝑧  ∨  ¬  𝑧  ≤  𝑟 ) )  ↔  𝑧  ∈  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∪  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } ) ) | 
						
							| 174 |  | eldifsn | ⊢ ( 𝑧  ∈  ( 𝐵  ∖  { 𝑟 } )  ↔  ( 𝑧  ∈  𝐵  ∧  𝑧  ≠  𝑟 ) ) | 
						
							| 175 | 174 | bicomi | ⊢ ( ( 𝑧  ∈  𝐵  ∧  𝑧  ≠  𝑟 )  ↔  𝑧  ∈  ( 𝐵  ∖  { 𝑟 } ) ) | 
						
							| 176 | 169 173 175 | 3bitr3g | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑟  ∈  𝐵 )  →  ( 𝑧  ∈  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∪  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } )  ↔  𝑧  ∈  ( 𝐵  ∖  { 𝑟 } ) ) ) | 
						
							| 177 | 159 160 161 176 | eqrd | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑟  ∈  𝐵 )  →  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∪  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } )  =  ( 𝐵  ∖  { 𝑟 } ) ) | 
						
							| 178 | 158 144 177 | syl2anc | ⊢ ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  →  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∪  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } )  =  ( 𝐵  ∖  { 𝑟 } ) ) | 
						
							| 179 | 157 178 | sseqtrrd | ⊢ ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  →  𝐴  ⊆  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∪  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } ) ) | 
						
							| 180 | 179 | adantlr | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ( ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥  ∧  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 ) )  ∧  ¬  𝑟  ∈  𝐴 )  →  𝐴  ⊆  ( { 𝑧  ∈  𝐵  ∣  ¬  𝑟  ≤  𝑧 }  ∪  { 𝑧  ∈  𝐵  ∣  ¬  𝑧  ≤  𝑟 } ) ) | 
						
							| 181 | 24 26 65 82 102 117 143 180 | nconnsubb | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ( ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥  ∧  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 ) )  ∧  ¬  𝑟  ∈  𝐴 )  →  ¬  ( 𝐽  ↾t  𝐴 )  ∈  Conn ) | 
						
							| 182 | 181 | anasss | ⊢ ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ( ( ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥  ∧  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 )  ∧  ¬  𝑟  ∈  𝐴 ) )  →  ¬  ( 𝐽  ↾t  𝐴 )  ∈  Conn ) | 
						
							| 183 | 182 | adantllr | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ∀ 𝑟  ∈  𝐵 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  →  𝑟  ∈  𝐴 ) )  ∧  𝑟  ∈  𝐵 )  ∧  ( ( ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥  ∧  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 )  ∧  ¬  𝑟  ∈  𝐴 ) )  →  ¬  ( 𝐽  ↾t  𝐴 )  ∈  Conn ) | 
						
							| 184 |  | rexanali | ⊢ ( ∃ 𝑟  ∈  𝐵 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  ∧  ¬  𝑟  ∈  𝐴 )  ↔  ¬  ∀ 𝑟  ∈  𝐵 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  →  𝑟  ∈  𝐴 ) ) | 
						
							| 185 | 184 | rexbii | ⊢ ( ∃ 𝑦  ∈  𝐴 ∃ 𝑟  ∈  𝐵 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  ∧  ¬  𝑟  ∈  𝐴 )  ↔  ∃ 𝑦  ∈  𝐴 ¬  ∀ 𝑟  ∈  𝐵 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  →  𝑟  ∈  𝐴 ) ) | 
						
							| 186 |  | rexcom | ⊢ ( ∃ 𝑦  ∈  𝐴 ∃ 𝑟  ∈  𝐵 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  ∧  ¬  𝑟  ∈  𝐴 )  ↔  ∃ 𝑟  ∈  𝐵 ∃ 𝑦  ∈  𝐴 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  ∧  ¬  𝑟  ∈  𝐴 ) ) | 
						
							| 187 |  | rexnal | ⊢ ( ∃ 𝑦  ∈  𝐴 ¬  ∀ 𝑟  ∈  𝐵 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  →  𝑟  ∈  𝐴 )  ↔  ¬  ∀ 𝑦  ∈  𝐴 ∀ 𝑟  ∈  𝐵 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  →  𝑟  ∈  𝐴 ) ) | 
						
							| 188 | 185 186 187 | 3bitr3i | ⊢ ( ∃ 𝑟  ∈  𝐵 ∃ 𝑦  ∈  𝐴 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  ∧  ¬  𝑟  ∈  𝐴 )  ↔  ¬  ∀ 𝑦  ∈  𝐴 ∀ 𝑟  ∈  𝐵 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  →  𝑟  ∈  𝐴 ) ) | 
						
							| 189 | 188 | rexbii | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑟  ∈  𝐵 ∃ 𝑦  ∈  𝐴 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  ∧  ¬  𝑟  ∈  𝐴 )  ↔  ∃ 𝑥  ∈  𝐴 ¬  ∀ 𝑦  ∈  𝐴 ∀ 𝑟  ∈  𝐵 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  →  𝑟  ∈  𝐴 ) ) | 
						
							| 190 |  | rexcom | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑟  ∈  𝐵 ∃ 𝑦  ∈  𝐴 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  ∧  ¬  𝑟  ∈  𝐴 )  ↔  ∃ 𝑟  ∈  𝐵 ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  ∧  ¬  𝑟  ∈  𝐴 ) ) | 
						
							| 191 |  | rexnal | ⊢ ( ∃ 𝑥  ∈  𝐴 ¬  ∀ 𝑦  ∈  𝐴 ∀ 𝑟  ∈  𝐵 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  →  𝑟  ∈  𝐴 )  ↔  ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ∀ 𝑟  ∈  𝐵 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  →  𝑟  ∈  𝐴 ) ) | 
						
							| 192 | 189 190 191 | 3bitr3i | ⊢ ( ∃ 𝑟  ∈  𝐵 ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  ∧  ¬  𝑟  ∈  𝐴 )  ↔  ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ∀ 𝑟  ∈  𝐵 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  →  𝑟  ∈  𝐴 ) ) | 
						
							| 193 |  | r19.41v | ⊢ ( ∃ 𝑦  ∈  𝐴 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  ∧  ¬  𝑟  ∈  𝐴 )  ↔  ( ∃ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  ∧  ¬  𝑟  ∈  𝐴 ) ) | 
						
							| 194 | 193 | rexbii | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  ∧  ¬  𝑟  ∈  𝐴 )  ↔  ∃ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  ∧  ¬  𝑟  ∈  𝐴 ) ) | 
						
							| 195 |  | r19.41v | ⊢ ( ∃ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  ∧  ¬  𝑟  ∈  𝐴 )  ↔  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  ∧  ¬  𝑟  ∈  𝐴 ) ) | 
						
							| 196 |  | reeanv | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  ↔  ( ∃ 𝑥  ∈  𝐴 𝑥  ≤  𝑟  ∧  ∃ 𝑦  ∈  𝐴 𝑟  ≤  𝑦 ) ) | 
						
							| 197 | 196 | anbi1i | ⊢ ( ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  ∧  ¬  𝑟  ∈  𝐴 )  ↔  ( ( ∃ 𝑥  ∈  𝐴 𝑥  ≤  𝑟  ∧  ∃ 𝑦  ∈  𝐴 𝑟  ≤  𝑦 )  ∧  ¬  𝑟  ∈  𝐴 ) ) | 
						
							| 198 | 194 195 197 | 3bitri | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  ∧  ¬  𝑟  ∈  𝐴 )  ↔  ( ( ∃ 𝑥  ∈  𝐴 𝑥  ≤  𝑟  ∧  ∃ 𝑦  ∈  𝐴 𝑟  ≤  𝑦 )  ∧  ¬  𝑟  ∈  𝐴 ) ) | 
						
							| 199 | 198 | rexbii | ⊢ ( ∃ 𝑟  ∈  𝐵 ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  ∧  ¬  𝑟  ∈  𝐴 )  ↔  ∃ 𝑟  ∈  𝐵 ( ( ∃ 𝑥  ∈  𝐴 𝑥  ≤  𝑟  ∧  ∃ 𝑦  ∈  𝐴 𝑟  ≤  𝑦 )  ∧  ¬  𝑟  ∈  𝐴 ) ) | 
						
							| 200 | 192 199 | bitr3i | ⊢ ( ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ∀ 𝑟  ∈  𝐵 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  →  𝑟  ∈  𝐴 )  ↔  ∃ 𝑟  ∈  𝐵 ( ( ∃ 𝑥  ∈  𝐴 𝑥  ≤  𝑟  ∧  ∃ 𝑦  ∈  𝐴 𝑟  ≤  𝑦 )  ∧  ¬  𝑟  ∈  𝐴 ) ) | 
						
							| 201 | 27 | ad2antrr | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  →  𝐾  ∈  Toset ) | 
						
							| 202 | 25 | sselda | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐵 ) | 
						
							| 203 |  | simpllr | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  →  𝑟  ∈  𝐵 ) | 
						
							| 204 | 1 2 | trleile | ⊢ ( ( 𝐾  ∈  Toset  ∧  𝑥  ∈  𝐵  ∧  𝑟  ∈  𝐵 )  →  ( 𝑥  ≤  𝑟  ∨  𝑟  ≤  𝑥 ) ) | 
						
							| 205 | 201 202 203 204 | syl3anc | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ≤  𝑟  ∨  𝑟  ≤  𝑥 ) ) | 
						
							| 206 |  | simpr | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 207 |  | simplr | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  →  ¬  𝑟  ∈  𝐴 ) | 
						
							| 208 |  | nelne2 | ⊢ ( ( 𝑥  ∈  𝐴  ∧  ¬  𝑟  ∈  𝐴 )  →  𝑥  ≠  𝑟 ) | 
						
							| 209 | 206 207 208 | syl2anc | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ≠  𝑟 ) | 
						
							| 210 | 158 | adantr | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  →  𝐾  ∈  Poset ) | 
						
							| 211 | 1 2 | posrasymb | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑥  ∈  𝐵  ∧  𝑟  ∈  𝐵 )  →  ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑥 )  ↔  𝑥  =  𝑟 ) ) | 
						
							| 212 | 211 | necon3bbid | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑥  ∈  𝐵  ∧  𝑟  ∈  𝐵 )  →  ( ¬  ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑥 )  ↔  𝑥  ≠  𝑟 ) ) | 
						
							| 213 | 210 202 203 212 | syl3anc | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  →  ( ¬  ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑥 )  ↔  𝑥  ≠  𝑟 ) ) | 
						
							| 214 | 209 213 | mpbird | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  →  ¬  ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑥 ) ) | 
						
							| 215 | 205 214 | jca | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑥  ≤  𝑟  ∨  𝑟  ≤  𝑥 )  ∧  ¬  ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑥 ) ) ) | 
						
							| 216 |  | pm5.17 | ⊢ ( ( ( 𝑥  ≤  𝑟  ∨  𝑟  ≤  𝑥 )  ∧  ¬  ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑥 ) )  ↔  ( 𝑥  ≤  𝑟  ↔  ¬  𝑟  ≤  𝑥 ) ) | 
						
							| 217 | 215 216 | sylib | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ≤  𝑟  ↔  ¬  𝑟  ≤  𝑥 ) ) | 
						
							| 218 | 217 | rexbidva | ⊢ ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  →  ( ∃ 𝑥  ∈  𝐴 𝑥  ≤  𝑟  ↔  ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥 ) ) | 
						
							| 219 | 27 | ad2antrr | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  𝐾  ∈  Toset ) | 
						
							| 220 |  | simpllr | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  𝑟  ∈  𝐵 ) | 
						
							| 221 | 25 | sselda | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  𝐵 ) | 
						
							| 222 | 1 2 | trleile | ⊢ ( ( 𝐾  ∈  Toset  ∧  𝑟  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑟  ≤  𝑦  ∨  𝑦  ≤  𝑟 ) ) | 
						
							| 223 | 219 220 221 222 | syl3anc | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑟  ≤  𝑦  ∨  𝑦  ≤  𝑟 ) ) | 
						
							| 224 |  | simpr | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  𝐴 ) | 
						
							| 225 |  | simplr | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  ¬  𝑟  ∈  𝐴 ) | 
						
							| 226 |  | nelne2 | ⊢ ( ( 𝑦  ∈  𝐴  ∧  ¬  𝑟  ∈  𝐴 )  →  𝑦  ≠  𝑟 ) | 
						
							| 227 | 224 225 226 | syl2anc | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  𝑦  ≠  𝑟 ) | 
						
							| 228 | 227 | necomd | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  𝑟  ≠  𝑦 ) | 
						
							| 229 | 158 | adantr | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  𝐾  ∈  Poset ) | 
						
							| 230 | 1 2 | posrasymb | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑟  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝑟  ≤  𝑦  ∧  𝑦  ≤  𝑟 )  ↔  𝑟  =  𝑦 ) ) | 
						
							| 231 | 230 | necon3bbid | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑟  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( ¬  ( 𝑟  ≤  𝑦  ∧  𝑦  ≤  𝑟 )  ↔  𝑟  ≠  𝑦 ) ) | 
						
							| 232 | 229 220 221 231 | syl3anc | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  ( ¬  ( 𝑟  ≤  𝑦  ∧  𝑦  ≤  𝑟 )  ↔  𝑟  ≠  𝑦 ) ) | 
						
							| 233 | 228 232 | mpbird | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  ¬  ( 𝑟  ≤  𝑦  ∧  𝑦  ≤  𝑟 ) ) | 
						
							| 234 | 223 233 | jca | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  ( ( 𝑟  ≤  𝑦  ∨  𝑦  ≤  𝑟 )  ∧  ¬  ( 𝑟  ≤  𝑦  ∧  𝑦  ≤  𝑟 ) ) ) | 
						
							| 235 |  | pm5.17 | ⊢ ( ( ( 𝑟  ≤  𝑦  ∨  𝑦  ≤  𝑟 )  ∧  ¬  ( 𝑟  ≤  𝑦  ∧  𝑦  ≤  𝑟 ) )  ↔  ( 𝑟  ≤  𝑦  ↔  ¬  𝑦  ≤  𝑟 ) ) | 
						
							| 236 | 234 235 | sylib | ⊢ ( ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑟  ≤  𝑦  ↔  ¬  𝑦  ≤  𝑟 ) ) | 
						
							| 237 | 236 | rexbidva | ⊢ ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  →  ( ∃ 𝑦  ∈  𝐴 𝑟  ≤  𝑦  ↔  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 ) ) | 
						
							| 238 | 218 237 | anbi12d | ⊢ ( ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  ∧  ¬  𝑟  ∈  𝐴 )  →  ( ( ∃ 𝑥  ∈  𝐴 𝑥  ≤  𝑟  ∧  ∃ 𝑦  ∈  𝐴 𝑟  ≤  𝑦 )  ↔  ( ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥  ∧  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 ) ) ) | 
						
							| 239 | 238 | ex | ⊢ ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  →  ( ¬  𝑟  ∈  𝐴  →  ( ( ∃ 𝑥  ∈  𝐴 𝑥  ≤  𝑟  ∧  ∃ 𝑦  ∈  𝐴 𝑟  ≤  𝑦 )  ↔  ( ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥  ∧  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 ) ) ) ) | 
						
							| 240 | 239 | pm5.32rd | ⊢ ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  𝑟  ∈  𝐵 )  →  ( ( ( ∃ 𝑥  ∈  𝐴 𝑥  ≤  𝑟  ∧  ∃ 𝑦  ∈  𝐴 𝑟  ≤  𝑦 )  ∧  ¬  𝑟  ∈  𝐴 )  ↔  ( ( ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥  ∧  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 )  ∧  ¬  𝑟  ∈  𝐴 ) ) ) | 
						
							| 241 | 240 | rexbidva | ⊢ ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  →  ( ∃ 𝑟  ∈  𝐵 ( ( ∃ 𝑥  ∈  𝐴 𝑥  ≤  𝑟  ∧  ∃ 𝑦  ∈  𝐴 𝑟  ≤  𝑦 )  ∧  ¬  𝑟  ∈  𝐴 )  ↔  ∃ 𝑟  ∈  𝐵 ( ( ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥  ∧  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 )  ∧  ¬  𝑟  ∈  𝐴 ) ) ) | 
						
							| 242 | 200 241 | bitrid | ⊢ ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  →  ( ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ∀ 𝑟  ∈  𝐵 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  →  𝑟  ∈  𝐴 )  ↔  ∃ 𝑟  ∈  𝐵 ( ( ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥  ∧  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 )  ∧  ¬  𝑟  ∈  𝐴 ) ) ) | 
						
							| 243 | 242 | biimpa | ⊢ ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ∀ 𝑟  ∈  𝐵 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  →  𝑟  ∈  𝐴 ) )  →  ∃ 𝑟  ∈  𝐵 ( ( ∃ 𝑥  ∈  𝐴 ¬  𝑟  ≤  𝑥  ∧  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑟 )  ∧  ¬  𝑟  ∈  𝐴 ) ) | 
						
							| 244 | 9 183 243 | r19.29af | ⊢ ( ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  ∧  ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ∀ 𝑟  ∈  𝐵 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  →  𝑟  ∈  𝐴 ) )  →  ¬  ( 𝐽  ↾t  𝐴 )  ∈  Conn ) | 
						
							| 245 | 244 | ex | ⊢ ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  →  ( ¬  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ∀ 𝑟  ∈  𝐵 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  →  𝑟  ∈  𝐴 )  →  ¬  ( 𝐽  ↾t  𝐴 )  ∈  Conn ) ) | 
						
							| 246 | 245 | con4d | ⊢ ( ( 𝐾  ∈  Toset  ∧  𝐴  ⊆  𝐵 )  →  ( ( 𝐽  ↾t  𝐴 )  ∈  Conn  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ∀ 𝑟  ∈  𝐵 ( ( 𝑥  ≤  𝑟  ∧  𝑟  ≤  𝑦 )  →  𝑟  ∈  𝐴 ) ) ) |