Metamath Proof Explorer


Theorem pjneli

Description: If a vector does not belong to subspace, the norm of its projection is less than its norm. (Contributed by NM, 27-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjnorm.1 𝐻C
pjnorm.2 𝐴 ∈ ℋ
Assertion pjneli ( ¬ 𝐴𝐻 ↔ ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) < ( norm𝐴 ) )

Proof

Step Hyp Ref Expression
1 pjnorm.1 𝐻C
2 pjnorm.2 𝐴 ∈ ℋ
3 1 2 pjnormi ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ≤ ( norm𝐴 )
4 3 biantrur ( ( norm𝐴 ) ≠ ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↔ ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ≤ ( norm𝐴 ) ∧ ( norm𝐴 ) ≠ ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ) )
5 1 2 pjoc1i ( 𝐴𝐻 ↔ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0 )
6 1 2 pjpythi ( ( norm𝐴 ) ↑ 2 ) = ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) )
7 sq0 ( 0 ↑ 2 ) = 0
8 7 oveq2i ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( 0 ↑ 2 ) ) = ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + 0 )
9 1 2 pjhclii ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ
10 9 normcli ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ∈ ℝ
11 10 resqcli ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ∈ ℝ
12 11 recni ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ∈ ℂ
13 12 addid1i ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + 0 ) = ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 )
14 8 13 eqtr2i ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) = ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( 0 ↑ 2 ) )
15 6 14 eqeq12i ( ( ( norm𝐴 ) ↑ 2 ) = ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ↔ ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ) = ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( 0 ↑ 2 ) ) )
16 1 choccli ( ⊥ ‘ 𝐻 ) ∈ C
17 16 2 pjhclii ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ
18 17 normcli ( norm ‘ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ∈ ℝ
19 18 resqcli ( ( norm ‘ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ∈ ℝ
20 19 recni ( ( norm ‘ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ∈ ℂ
21 0cn 0 ∈ ℂ
22 21 sqcli ( 0 ↑ 2 ) ∈ ℂ
23 12 20 22 addcani ( ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ) = ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( 0 ↑ 2 ) ) ↔ ( ( norm ‘ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) = ( 0 ↑ 2 ) )
24 normge0 ( ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ → 0 ≤ ( norm ‘ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) )
25 17 24 ax-mp 0 ≤ ( norm ‘ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) )
26 0le0 0 ≤ 0
27 0re 0 ∈ ℝ
28 18 27 sq11i ( ( 0 ≤ ( norm ‘ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ∧ 0 ≤ 0 ) → ( ( ( norm ‘ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) = ( 0 ↑ 2 ) ↔ ( norm ‘ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 0 ) )
29 25 26 28 mp2an ( ( ( norm ‘ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) = ( 0 ↑ 2 ) ↔ ( norm ‘ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 0 )
30 17 norm-i-i ( ( norm ‘ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 0 ↔ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0 )
31 23 29 30 3bitri ( ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ) = ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( 0 ↑ 2 ) ) ↔ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0 )
32 15 31 bitr2i ( ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0 ↔ ( ( norm𝐴 ) ↑ 2 ) = ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) )
33 normge0 ( 𝐴 ∈ ℋ → 0 ≤ ( norm𝐴 ) )
34 2 33 ax-mp 0 ≤ ( norm𝐴 )
35 normge0 ( ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ → 0 ≤ ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) )
36 9 35 ax-mp 0 ≤ ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) )
37 2 normcli ( norm𝐴 ) ∈ ℝ
38 37 10 sq11i ( ( 0 ≤ ( norm𝐴 ) ∧ 0 ≤ ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ) → ( ( ( norm𝐴 ) ↑ 2 ) = ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ↔ ( norm𝐴 ) = ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ) )
39 34 36 38 mp2an ( ( ( norm𝐴 ) ↑ 2 ) = ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ↔ ( norm𝐴 ) = ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) )
40 5 32 39 3bitri ( 𝐴𝐻 ↔ ( norm𝐴 ) = ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) )
41 40 necon3bbii ( ¬ 𝐴𝐻 ↔ ( norm𝐴 ) ≠ ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) )
42 10 37 ltleni ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) < ( norm𝐴 ) ↔ ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ≤ ( norm𝐴 ) ∧ ( norm𝐴 ) ≠ ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ) )
43 4 41 42 3bitr4i ( ¬ 𝐴𝐻 ↔ ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) < ( norm𝐴 ) )