Step |
Hyp |
Ref |
Expression |
1 |
|
ply1vr1smo.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1vr1smo.i |
⊢ 1 = ( 1r ‘ 𝑅 ) |
3 |
|
ply1vr1smo.t |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
4 |
|
ply1vr1smo.m |
⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) |
5 |
|
ply1vr1smo.e |
⊢ ↑ = ( .g ‘ 𝐺 ) |
6 |
|
ply1vr1smo.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
7 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
8 |
7
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) |
9 |
2 8
|
eqtrid |
⊢ ( 𝑅 ∈ Ring → 1 = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) |
10 |
9
|
oveq1d |
⊢ ( 𝑅 ∈ Ring → ( 1 · ( 1 ↑ 𝑋 ) ) = ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) · ( 1 ↑ 𝑋 ) ) ) |
11 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
13 |
6 1 12
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
14 |
4 12
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝐺 ) |
15 |
14 5
|
mulg1 |
⊢ ( 𝑋 ∈ ( Base ‘ 𝑃 ) → ( 1 ↑ 𝑋 ) = 𝑋 ) |
16 |
13 15
|
syl |
⊢ ( 𝑅 ∈ Ring → ( 1 ↑ 𝑋 ) = 𝑋 ) |
17 |
16 13
|
eqeltrd |
⊢ ( 𝑅 ∈ Ring → ( 1 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
18 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
19 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑃 ) ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) |
20 |
12 18 3 19
|
lmodvs1 |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 1 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) · ( 1 ↑ 𝑋 ) ) = ( 1 ↑ 𝑋 ) ) |
21 |
11 17 20
|
syl2anc |
⊢ ( 𝑅 ∈ Ring → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) · ( 1 ↑ 𝑋 ) ) = ( 1 ↑ 𝑋 ) ) |
22 |
10 21 16
|
3eqtrd |
⊢ ( 𝑅 ∈ Ring → ( 1 · ( 1 ↑ 𝑋 ) ) = 𝑋 ) |