| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1vr1smo.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | ply1vr1smo.i | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 3 |  | ply1vr1smo.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 4 |  | ply1vr1smo.m | ⊢ 𝐺  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 5 |  | ply1vr1smo.e | ⊢  ↑   =  ( .g ‘ 𝐺 ) | 
						
							| 6 |  | ply1vr1smo.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 | 1 | ply1sca | ⊢ ( 𝑅  ∈  Ring  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  =  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 9 | 2 8 | eqtrid | ⊢ ( 𝑅  ∈  Ring  →   1   =  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 10 | 9 | oveq1d | ⊢ ( 𝑅  ∈  Ring  →  (  1   ·  ( 1  ↑  𝑋 ) )  =  ( ( 1r ‘ ( Scalar ‘ 𝑃 ) )  ·  ( 1  ↑  𝑋 ) ) ) | 
						
							| 11 | 1 | ply1lmod | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  LMod ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 13 | 6 1 12 | vr1cl | ⊢ ( 𝑅  ∈  Ring  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 14 | 4 12 | mgpbas | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝐺 ) | 
						
							| 15 | 14 5 | mulg1 | ⊢ ( 𝑋  ∈  ( Base ‘ 𝑃 )  →  ( 1  ↑  𝑋 )  =  𝑋 ) | 
						
							| 16 | 13 15 | syl | ⊢ ( 𝑅  ∈  Ring  →  ( 1  ↑  𝑋 )  =  𝑋 ) | 
						
							| 17 | 16 13 | eqeltrd | ⊢ ( 𝑅  ∈  Ring  →  ( 1  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 18 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 19 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑃 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 20 | 12 18 3 19 | lmodvs1 | ⊢ ( ( 𝑃  ∈  LMod  ∧  ( 1  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) )  →  ( ( 1r ‘ ( Scalar ‘ 𝑃 ) )  ·  ( 1  ↑  𝑋 ) )  =  ( 1  ↑  𝑋 ) ) | 
						
							| 21 | 11 17 20 | syl2anc | ⊢ ( 𝑅  ∈  Ring  →  ( ( 1r ‘ ( Scalar ‘ 𝑃 ) )  ·  ( 1  ↑  𝑋 ) )  =  ( 1  ↑  𝑋 ) ) | 
						
							| 22 | 10 21 16 | 3eqtrd | ⊢ ( 𝑅  ∈  Ring  →  (  1   ·  ( 1  ↑  𝑋 ) )  =  𝑋 ) |