Metamath Proof Explorer


Theorem ply1vr1smo

Description: The variable in a polynomial expressed as scaled monomial. (Contributed by AV, 12-Aug-2019)

Ref Expression
Hypotheses ply1vr1smo.p 𝑃 = ( Poly1𝑅 )
ply1vr1smo.i 1 = ( 1r𝑅 )
ply1vr1smo.t · = ( ·𝑠𝑃 )
ply1vr1smo.m 𝐺 = ( mulGrp ‘ 𝑃 )
ply1vr1smo.e = ( .g𝐺 )
ply1vr1smo.x 𝑋 = ( var1𝑅 )
Assertion ply1vr1smo ( 𝑅 ∈ Ring → ( 1 · ( 1 𝑋 ) ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 ply1vr1smo.p 𝑃 = ( Poly1𝑅 )
2 ply1vr1smo.i 1 = ( 1r𝑅 )
3 ply1vr1smo.t · = ( ·𝑠𝑃 )
4 ply1vr1smo.m 𝐺 = ( mulGrp ‘ 𝑃 )
5 ply1vr1smo.e = ( .g𝐺 )
6 ply1vr1smo.x 𝑋 = ( var1𝑅 )
7 1 ply1sca ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) )
8 7 fveq2d ( 𝑅 ∈ Ring → ( 1r𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) )
9 2 8 syl5eq ( 𝑅 ∈ Ring → 1 = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) )
10 9 oveq1d ( 𝑅 ∈ Ring → ( 1 · ( 1 𝑋 ) ) = ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) · ( 1 𝑋 ) ) )
11 1 ply1lmod ( 𝑅 ∈ Ring → 𝑃 ∈ LMod )
12 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
13 6 1 12 vr1cl ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) )
14 4 12 mgpbas ( Base ‘ 𝑃 ) = ( Base ‘ 𝐺 )
15 14 5 mulg1 ( 𝑋 ∈ ( Base ‘ 𝑃 ) → ( 1 𝑋 ) = 𝑋 )
16 13 15 syl ( 𝑅 ∈ Ring → ( 1 𝑋 ) = 𝑋 )
17 16 13 eqeltrd ( 𝑅 ∈ Ring → ( 1 𝑋 ) ∈ ( Base ‘ 𝑃 ) )
18 eqid ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 )
19 eqid ( 1r ‘ ( Scalar ‘ 𝑃 ) ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) )
20 12 18 3 19 lmodvs1 ( ( 𝑃 ∈ LMod ∧ ( 1 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) · ( 1 𝑋 ) ) = ( 1 𝑋 ) )
21 11 17 20 syl2anc ( 𝑅 ∈ Ring → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) · ( 1 𝑋 ) ) = ( 1 𝑋 ) )
22 10 21 16 3eqtrd ( 𝑅 ∈ Ring → ( 1 · ( 1 𝑋 ) ) = 𝑋 )