Step |
Hyp |
Ref |
Expression |
1 |
|
ply1vr1smo.p |
|- P = ( Poly1 ` R ) |
2 |
|
ply1vr1smo.i |
|- .1. = ( 1r ` R ) |
3 |
|
ply1vr1smo.t |
|- .x. = ( .s ` P ) |
4 |
|
ply1vr1smo.m |
|- G = ( mulGrp ` P ) |
5 |
|
ply1vr1smo.e |
|- .^ = ( .g ` G ) |
6 |
|
ply1vr1smo.x |
|- X = ( var1 ` R ) |
7 |
1
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
8 |
7
|
fveq2d |
|- ( R e. Ring -> ( 1r ` R ) = ( 1r ` ( Scalar ` P ) ) ) |
9 |
2 8
|
eqtrid |
|- ( R e. Ring -> .1. = ( 1r ` ( Scalar ` P ) ) ) |
10 |
9
|
oveq1d |
|- ( R e. Ring -> ( .1. .x. ( 1 .^ X ) ) = ( ( 1r ` ( Scalar ` P ) ) .x. ( 1 .^ X ) ) ) |
11 |
1
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
12 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
13 |
6 1 12
|
vr1cl |
|- ( R e. Ring -> X e. ( Base ` P ) ) |
14 |
4 12
|
mgpbas |
|- ( Base ` P ) = ( Base ` G ) |
15 |
14 5
|
mulg1 |
|- ( X e. ( Base ` P ) -> ( 1 .^ X ) = X ) |
16 |
13 15
|
syl |
|- ( R e. Ring -> ( 1 .^ X ) = X ) |
17 |
16 13
|
eqeltrd |
|- ( R e. Ring -> ( 1 .^ X ) e. ( Base ` P ) ) |
18 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
19 |
|
eqid |
|- ( 1r ` ( Scalar ` P ) ) = ( 1r ` ( Scalar ` P ) ) |
20 |
12 18 3 19
|
lmodvs1 |
|- ( ( P e. LMod /\ ( 1 .^ X ) e. ( Base ` P ) ) -> ( ( 1r ` ( Scalar ` P ) ) .x. ( 1 .^ X ) ) = ( 1 .^ X ) ) |
21 |
11 17 20
|
syl2anc |
|- ( R e. Ring -> ( ( 1r ` ( Scalar ` P ) ) .x. ( 1 .^ X ) ) = ( 1 .^ X ) ) |
22 |
10 21 16
|
3eqtrd |
|- ( R e. Ring -> ( .1. .x. ( 1 .^ X ) ) = X ) |