Metamath Proof Explorer


Theorem ply1vr1smo

Description: The variable in a polynomial expressed as scaled monomial. (Contributed by AV, 12-Aug-2019)

Ref Expression
Hypotheses ply1vr1smo.p
|- P = ( Poly1 ` R )
ply1vr1smo.i
|- .1. = ( 1r ` R )
ply1vr1smo.t
|- .x. = ( .s ` P )
ply1vr1smo.m
|- G = ( mulGrp ` P )
ply1vr1smo.e
|- .^ = ( .g ` G )
ply1vr1smo.x
|- X = ( var1 ` R )
Assertion ply1vr1smo
|- ( R e. Ring -> ( .1. .x. ( 1 .^ X ) ) = X )

Proof

Step Hyp Ref Expression
1 ply1vr1smo.p
 |-  P = ( Poly1 ` R )
2 ply1vr1smo.i
 |-  .1. = ( 1r ` R )
3 ply1vr1smo.t
 |-  .x. = ( .s ` P )
4 ply1vr1smo.m
 |-  G = ( mulGrp ` P )
5 ply1vr1smo.e
 |-  .^ = ( .g ` G )
6 ply1vr1smo.x
 |-  X = ( var1 ` R )
7 1 ply1sca
 |-  ( R e. Ring -> R = ( Scalar ` P ) )
8 7 fveq2d
 |-  ( R e. Ring -> ( 1r ` R ) = ( 1r ` ( Scalar ` P ) ) )
9 2 8 eqtrid
 |-  ( R e. Ring -> .1. = ( 1r ` ( Scalar ` P ) ) )
10 9 oveq1d
 |-  ( R e. Ring -> ( .1. .x. ( 1 .^ X ) ) = ( ( 1r ` ( Scalar ` P ) ) .x. ( 1 .^ X ) ) )
11 1 ply1lmod
 |-  ( R e. Ring -> P e. LMod )
12 eqid
 |-  ( Base ` P ) = ( Base ` P )
13 6 1 12 vr1cl
 |-  ( R e. Ring -> X e. ( Base ` P ) )
14 4 12 mgpbas
 |-  ( Base ` P ) = ( Base ` G )
15 14 5 mulg1
 |-  ( X e. ( Base ` P ) -> ( 1 .^ X ) = X )
16 13 15 syl
 |-  ( R e. Ring -> ( 1 .^ X ) = X )
17 16 13 eqeltrd
 |-  ( R e. Ring -> ( 1 .^ X ) e. ( Base ` P ) )
18 eqid
 |-  ( Scalar ` P ) = ( Scalar ` P )
19 eqid
 |-  ( 1r ` ( Scalar ` P ) ) = ( 1r ` ( Scalar ` P ) )
20 12 18 3 19 lmodvs1
 |-  ( ( P e. LMod /\ ( 1 .^ X ) e. ( Base ` P ) ) -> ( ( 1r ` ( Scalar ` P ) ) .x. ( 1 .^ X ) ) = ( 1 .^ X ) )
21 11 17 20 syl2anc
 |-  ( R e. Ring -> ( ( 1r ` ( Scalar ` P ) ) .x. ( 1 .^ X ) ) = ( 1 .^ X ) )
22 10 21 16 3eqtrd
 |-  ( R e. Ring -> ( .1. .x. ( 1 .^ X ) ) = X )