| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1vr1smo.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | ply1vr1smo.i |  |-  .1. = ( 1r ` R ) | 
						
							| 3 |  | ply1vr1smo.t |  |-  .x. = ( .s ` P ) | 
						
							| 4 |  | ply1vr1smo.m |  |-  G = ( mulGrp ` P ) | 
						
							| 5 |  | ply1vr1smo.e |  |-  .^ = ( .g ` G ) | 
						
							| 6 |  | ply1vr1smo.x |  |-  X = ( var1 ` R ) | 
						
							| 7 | 1 | ply1sca |  |-  ( R e. Ring -> R = ( Scalar ` P ) ) | 
						
							| 8 | 7 | fveq2d |  |-  ( R e. Ring -> ( 1r ` R ) = ( 1r ` ( Scalar ` P ) ) ) | 
						
							| 9 | 2 8 | eqtrid |  |-  ( R e. Ring -> .1. = ( 1r ` ( Scalar ` P ) ) ) | 
						
							| 10 | 9 | oveq1d |  |-  ( R e. Ring -> ( .1. .x. ( 1 .^ X ) ) = ( ( 1r ` ( Scalar ` P ) ) .x. ( 1 .^ X ) ) ) | 
						
							| 11 | 1 | ply1lmod |  |-  ( R e. Ring -> P e. LMod ) | 
						
							| 12 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 13 | 6 1 12 | vr1cl |  |-  ( R e. Ring -> X e. ( Base ` P ) ) | 
						
							| 14 | 4 12 | mgpbas |  |-  ( Base ` P ) = ( Base ` G ) | 
						
							| 15 | 14 5 | mulg1 |  |-  ( X e. ( Base ` P ) -> ( 1 .^ X ) = X ) | 
						
							| 16 | 13 15 | syl |  |-  ( R e. Ring -> ( 1 .^ X ) = X ) | 
						
							| 17 | 16 13 | eqeltrd |  |-  ( R e. Ring -> ( 1 .^ X ) e. ( Base ` P ) ) | 
						
							| 18 |  | eqid |  |-  ( Scalar ` P ) = ( Scalar ` P ) | 
						
							| 19 |  | eqid |  |-  ( 1r ` ( Scalar ` P ) ) = ( 1r ` ( Scalar ` P ) ) | 
						
							| 20 | 12 18 3 19 | lmodvs1 |  |-  ( ( P e. LMod /\ ( 1 .^ X ) e. ( Base ` P ) ) -> ( ( 1r ` ( Scalar ` P ) ) .x. ( 1 .^ X ) ) = ( 1 .^ X ) ) | 
						
							| 21 | 11 17 20 | syl2anc |  |-  ( R e. Ring -> ( ( 1r ` ( Scalar ` P ) ) .x. ( 1 .^ X ) ) = ( 1 .^ X ) ) | 
						
							| 22 | 10 21 16 | 3eqtrd |  |-  ( R e. Ring -> ( .1. .x. ( 1 .^ X ) ) = X ) |