| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1vr1smo.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ply1vr1smo.i |
|- .1. = ( 1r ` R ) |
| 3 |
|
ply1vr1smo.t |
|- .x. = ( .s ` P ) |
| 4 |
|
ply1vr1smo.m |
|- G = ( mulGrp ` P ) |
| 5 |
|
ply1vr1smo.e |
|- .^ = ( .g ` G ) |
| 6 |
|
ply1vr1smo.x |
|- X = ( var1 ` R ) |
| 7 |
1
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
| 8 |
7
|
fveq2d |
|- ( R e. Ring -> ( 1r ` R ) = ( 1r ` ( Scalar ` P ) ) ) |
| 9 |
2 8
|
eqtrid |
|- ( R e. Ring -> .1. = ( 1r ` ( Scalar ` P ) ) ) |
| 10 |
9
|
oveq1d |
|- ( R e. Ring -> ( .1. .x. ( 1 .^ X ) ) = ( ( 1r ` ( Scalar ` P ) ) .x. ( 1 .^ X ) ) ) |
| 11 |
1
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
| 12 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 13 |
6 1 12
|
vr1cl |
|- ( R e. Ring -> X e. ( Base ` P ) ) |
| 14 |
4 12
|
mgpbas |
|- ( Base ` P ) = ( Base ` G ) |
| 15 |
14 5
|
mulg1 |
|- ( X e. ( Base ` P ) -> ( 1 .^ X ) = X ) |
| 16 |
13 15
|
syl |
|- ( R e. Ring -> ( 1 .^ X ) = X ) |
| 17 |
16 13
|
eqeltrd |
|- ( R e. Ring -> ( 1 .^ X ) e. ( Base ` P ) ) |
| 18 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
| 19 |
|
eqid |
|- ( 1r ` ( Scalar ` P ) ) = ( 1r ` ( Scalar ` P ) ) |
| 20 |
12 18 3 19
|
lmodvs1 |
|- ( ( P e. LMod /\ ( 1 .^ X ) e. ( Base ` P ) ) -> ( ( 1r ` ( Scalar ` P ) ) .x. ( 1 .^ X ) ) = ( 1 .^ X ) ) |
| 21 |
11 17 20
|
syl2anc |
|- ( R e. Ring -> ( ( 1r ` ( Scalar ` P ) ) .x. ( 1 .^ X ) ) = ( 1 .^ X ) ) |
| 22 |
10 21 16
|
3eqtrd |
|- ( R e. Ring -> ( .1. .x. ( 1 .^ X ) ) = X ) |