| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmapj2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
pmapj2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
pmapj2.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
| 4 |
|
pmapj2.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
| 5 |
|
pmapj2.o |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
| 6 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ HL ) |
| 7 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
| 8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
| 9 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
| 10 |
9
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
| 11 |
|
simp2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 12 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
| 13 |
1 12
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 14 |
10 11 13
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 15 |
|
simp3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
| 16 |
1 12
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 17 |
10 15 16
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 18 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
| 19 |
1 18
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 20 |
8 14 17 19
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 21 |
1 12 3 5
|
polpmapN |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑀 ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) = ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) ) |
| 22 |
6 20 21
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑀 ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) = ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) ) |
| 23 |
1 12 3 5
|
polpmapN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑀 ‘ 𝑋 ) ) = ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 24 |
23
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑀 ‘ 𝑋 ) ) = ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 25 |
1 12 3 5
|
polpmapN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑀 ‘ 𝑌 ) ) = ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
| 26 |
25
|
3adant2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑀 ‘ 𝑌 ) ) = ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
| 27 |
24 26
|
ineq12d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ ( 𝑀 ‘ 𝑋 ) ) ∩ ( ⊥ ‘ ( 𝑀 ‘ 𝑌 ) ) ) = ( ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ∩ ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) |
| 28 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
| 29 |
1 28 3
|
pmapssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
| 30 |
29
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
| 31 |
1 28 3
|
pmapssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑌 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
| 32 |
31
|
3adant2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑌 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
| 33 |
28 4 5
|
poldmj1N |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑀 ‘ 𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) ∧ ( 𝑀 ‘ 𝑌 ) ⊆ ( Atoms ‘ 𝐾 ) ) → ( ⊥ ‘ ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑌 ) ) ) = ( ( ⊥ ‘ ( 𝑀 ‘ 𝑋 ) ) ∩ ( ⊥ ‘ ( 𝑀 ‘ 𝑌 ) ) ) ) |
| 34 |
6 30 32 33
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑌 ) ) ) = ( ( ⊥ ‘ ( 𝑀 ‘ 𝑋 ) ) ∩ ( ⊥ ‘ ( 𝑀 ‘ 𝑌 ) ) ) ) |
| 35 |
1 18 28 3
|
pmapmeet |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝑀 ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ∩ ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) |
| 36 |
6 14 17 35
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑀 ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ∩ ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) |
| 37 |
27 34 36
|
3eqtr4rd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑀 ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( ⊥ ‘ ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑌 ) ) ) ) |
| 38 |
37
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( 𝑀 ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑌 ) ) ) ) ) |
| 39 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
| 40 |
1 2 18 12
|
oldmm4 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( 𝑋 ∨ 𝑌 ) ) |
| 41 |
39 40
|
syl3an1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( 𝑋 ∨ 𝑌 ) ) |
| 42 |
41
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) = ( 𝑀 ‘ ( 𝑋 ∨ 𝑌 ) ) ) |
| 43 |
22 38 42
|
3eqtr3rd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑀 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ⊥ ‘ ( ⊥ ‘ ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑌 ) ) ) ) ) |