| Step |
Hyp |
Ref |
Expression |
| 1 |
|
paddun.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 2 |
|
paddun.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
| 3 |
|
paddun.o |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
| 4 |
1 2 3
|
paddunN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ⊥ ‘ ( 𝑆 + 𝑇 ) ) = ( ⊥ ‘ ( 𝑆 ∪ 𝑇 ) ) ) |
| 5 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → 𝐾 ∈ HL ) |
| 6 |
|
unss |
⊢ ( ( 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) ↔ ( 𝑆 ∪ 𝑇 ) ⊆ 𝐴 ) |
| 7 |
6
|
biimpi |
⊢ ( ( 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( 𝑆 ∪ 𝑇 ) ⊆ 𝐴 ) |
| 8 |
7
|
3adant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( 𝑆 ∪ 𝑇 ) ⊆ 𝐴 ) |
| 9 |
|
eqid |
⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) |
| 10 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
| 11 |
|
eqid |
⊢ ( pmap ‘ 𝐾 ) = ( pmap ‘ 𝐾 ) |
| 12 |
9 10 1 11 3
|
polval2N |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑆 ∪ 𝑇 ) ⊆ 𝐴 ) → ( ⊥ ‘ ( 𝑆 ∪ 𝑇 ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ) ) |
| 13 |
5 8 12
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ⊥ ‘ ( 𝑆 ∪ 𝑇 ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ) ) |
| 14 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
| 15 |
14
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → 𝐾 ∈ OP ) |
| 16 |
|
hlclat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ CLat ) |
| 17 |
16
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → 𝐾 ∈ CLat ) |
| 18 |
|
simp2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → 𝑆 ⊆ 𝐴 ) |
| 19 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 20 |
19 1
|
atssbase |
⊢ 𝐴 ⊆ ( Base ‘ 𝐾 ) |
| 21 |
18 20
|
sstrdi |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → 𝑆 ⊆ ( Base ‘ 𝐾 ) ) |
| 22 |
19 9
|
clatlubcl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ ( Base ‘ 𝐾 ) ) → ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 23 |
17 21 22
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 24 |
19 10
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 25 |
15 23 24
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 26 |
|
simp3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → 𝑇 ⊆ 𝐴 ) |
| 27 |
26 20
|
sstrdi |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → 𝑇 ⊆ ( Base ‘ 𝐾 ) ) |
| 28 |
19 9
|
clatlubcl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ ( Base ‘ 𝐾 ) ) → ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
| 29 |
17 27 28
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
| 30 |
19 10
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 31 |
15 29 30
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 32 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
| 33 |
19 32 1 11
|
pmapmeet |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) ) ∩ ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) ) ) |
| 34 |
5 25 31 33
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) ) ∩ ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) ) ) |
| 35 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
| 36 |
19 35 9
|
lubun |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ ( Base ‘ 𝐾 ) ∧ 𝑇 ⊆ ( Base ‘ 𝐾 ) ) → ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) = ( ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) |
| 37 |
17 21 27 36
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) = ( ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) |
| 38 |
37
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) = ( ( oc ‘ 𝐾 ) ‘ ( ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) ) |
| 39 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
| 40 |
39
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → 𝐾 ∈ OL ) |
| 41 |
19 35 32 10
|
oldmj1 |
⊢ ( ( 𝐾 ∈ OL ∧ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) = ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) ) |
| 42 |
40 23 29 41
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) = ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) ) |
| 43 |
38 42
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) = ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) ) |
| 44 |
43
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) ) ) |
| 45 |
9 10 1 11 3
|
polval2N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑆 ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) ) ) |
| 46 |
45
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑆 ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) ) ) |
| 47 |
9 10 1 11 3
|
polval2N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑇 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑇 ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) ) |
| 48 |
47
|
3adant2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑇 ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) ) |
| 49 |
46 48
|
ineq12d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( ⊥ ‘ 𝑆 ) ∩ ( ⊥ ‘ 𝑇 ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) ) ∩ ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) ) ) |
| 50 |
34 44 49
|
3eqtr4d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ) = ( ( ⊥ ‘ 𝑆 ) ∩ ( ⊥ ‘ 𝑇 ) ) ) |
| 51 |
4 13 50
|
3eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ⊥ ‘ ( 𝑆 + 𝑇 ) ) = ( ( ⊥ ‘ 𝑆 ) ∩ ( ⊥ ‘ 𝑇 ) ) ) |