| Step |
Hyp |
Ref |
Expression |
| 1 |
|
paddun.a |
|- A = ( Atoms ` K ) |
| 2 |
|
paddun.p |
|- .+ = ( +P ` K ) |
| 3 |
|
paddun.o |
|- ._|_ = ( _|_P ` K ) |
| 4 |
1 2 3
|
paddunN |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ._|_ ` ( S .+ T ) ) = ( ._|_ ` ( S u. T ) ) ) |
| 5 |
|
simp1 |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> K e. HL ) |
| 6 |
|
unss |
|- ( ( S C_ A /\ T C_ A ) <-> ( S u. T ) C_ A ) |
| 7 |
6
|
biimpi |
|- ( ( S C_ A /\ T C_ A ) -> ( S u. T ) C_ A ) |
| 8 |
7
|
3adant1 |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( S u. T ) C_ A ) |
| 9 |
|
eqid |
|- ( lub ` K ) = ( lub ` K ) |
| 10 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
| 11 |
|
eqid |
|- ( pmap ` K ) = ( pmap ` K ) |
| 12 |
9 10 1 11 3
|
polval2N |
|- ( ( K e. HL /\ ( S u. T ) C_ A ) -> ( ._|_ ` ( S u. T ) ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` ( S u. T ) ) ) ) ) |
| 13 |
5 8 12
|
syl2anc |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ._|_ ` ( S u. T ) ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` ( S u. T ) ) ) ) ) |
| 14 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 15 |
14
|
3ad2ant1 |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> K e. OP ) |
| 16 |
|
hlclat |
|- ( K e. HL -> K e. CLat ) |
| 17 |
16
|
3ad2ant1 |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> K e. CLat ) |
| 18 |
|
simp2 |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> S C_ A ) |
| 19 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 20 |
19 1
|
atssbase |
|- A C_ ( Base ` K ) |
| 21 |
18 20
|
sstrdi |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> S C_ ( Base ` K ) ) |
| 22 |
19 9
|
clatlubcl |
|- ( ( K e. CLat /\ S C_ ( Base ` K ) ) -> ( ( lub ` K ) ` S ) e. ( Base ` K ) ) |
| 23 |
17 21 22
|
syl2anc |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( lub ` K ) ` S ) e. ( Base ` K ) ) |
| 24 |
19 10
|
opoccl |
|- ( ( K e. OP /\ ( ( lub ` K ) ` S ) e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) e. ( Base ` K ) ) |
| 25 |
15 23 24
|
syl2anc |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) e. ( Base ` K ) ) |
| 26 |
|
simp3 |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> T C_ A ) |
| 27 |
26 20
|
sstrdi |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> T C_ ( Base ` K ) ) |
| 28 |
19 9
|
clatlubcl |
|- ( ( K e. CLat /\ T C_ ( Base ` K ) ) -> ( ( lub ` K ) ` T ) e. ( Base ` K ) ) |
| 29 |
17 27 28
|
syl2anc |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( lub ` K ) ` T ) e. ( Base ` K ) ) |
| 30 |
19 10
|
opoccl |
|- ( ( K e. OP /\ ( ( lub ` K ) ` T ) e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) e. ( Base ` K ) ) |
| 31 |
15 29 30
|
syl2anc |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) e. ( Base ` K ) ) |
| 32 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
| 33 |
19 32 1 11
|
pmapmeet |
|- ( ( K e. HL /\ ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) e. ( Base ` K ) /\ ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) e. ( Base ` K ) ) -> ( ( pmap ` K ) ` ( ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ( meet ` K ) ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) = ( ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ) i^i ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) ) |
| 34 |
5 25 31 33
|
syl3anc |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( pmap ` K ) ` ( ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ( meet ` K ) ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) = ( ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ) i^i ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) ) |
| 35 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 36 |
19 35 9
|
lubun |
|- ( ( K e. CLat /\ S C_ ( Base ` K ) /\ T C_ ( Base ` K ) ) -> ( ( lub ` K ) ` ( S u. T ) ) = ( ( ( lub ` K ) ` S ) ( join ` K ) ( ( lub ` K ) ` T ) ) ) |
| 37 |
17 21 27 36
|
syl3anc |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( lub ` K ) ` ( S u. T ) ) = ( ( ( lub ` K ) ` S ) ( join ` K ) ( ( lub ` K ) ` T ) ) ) |
| 38 |
37
|
fveq2d |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( oc ` K ) ` ( ( lub ` K ) ` ( S u. T ) ) ) = ( ( oc ` K ) ` ( ( ( lub ` K ) ` S ) ( join ` K ) ( ( lub ` K ) ` T ) ) ) ) |
| 39 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
| 40 |
39
|
3ad2ant1 |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> K e. OL ) |
| 41 |
19 35 32 10
|
oldmj1 |
|- ( ( K e. OL /\ ( ( lub ` K ) ` S ) e. ( Base ` K ) /\ ( ( lub ` K ) ` T ) e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( ( ( lub ` K ) ` S ) ( join ` K ) ( ( lub ` K ) ` T ) ) ) = ( ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ( meet ` K ) ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) |
| 42 |
40 23 29 41
|
syl3anc |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( oc ` K ) ` ( ( ( lub ` K ) ` S ) ( join ` K ) ( ( lub ` K ) ` T ) ) ) = ( ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ( meet ` K ) ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) |
| 43 |
38 42
|
eqtrd |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( oc ` K ) ` ( ( lub ` K ) ` ( S u. T ) ) ) = ( ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ( meet ` K ) ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) |
| 44 |
43
|
fveq2d |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` ( S u. T ) ) ) ) = ( ( pmap ` K ) ` ( ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ( meet ` K ) ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) ) |
| 45 |
9 10 1 11 3
|
polval2N |
|- ( ( K e. HL /\ S C_ A ) -> ( ._|_ ` S ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ) ) |
| 46 |
45
|
3adant3 |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ._|_ ` S ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ) ) |
| 47 |
9 10 1 11 3
|
polval2N |
|- ( ( K e. HL /\ T C_ A ) -> ( ._|_ ` T ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) |
| 48 |
47
|
3adant2 |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ._|_ ` T ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) |
| 49 |
46 48
|
ineq12d |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( ._|_ ` S ) i^i ( ._|_ ` T ) ) = ( ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ) i^i ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) ) |
| 50 |
34 44 49
|
3eqtr4d |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` ( S u. T ) ) ) ) = ( ( ._|_ ` S ) i^i ( ._|_ ` T ) ) ) |
| 51 |
4 13 50
|
3eqtrd |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ._|_ ` ( S .+ T ) ) = ( ( ._|_ ` S ) i^i ( ._|_ ` T ) ) ) |