| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lubun.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
lubun.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
lubun.u |
⊢ 𝑈 = ( lub ‘ 𝐾 ) |
| 4 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 5 |
|
biid |
⊢ ( ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) |
| 6 |
|
simp1 |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → 𝐾 ∈ CLat ) |
| 7 |
|
unss |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ↔ ( 𝑆 ∪ 𝑇 ) ⊆ 𝐵 ) |
| 8 |
7
|
biimpi |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( 𝑆 ∪ 𝑇 ) ⊆ 𝐵 ) |
| 9 |
8
|
3adant1 |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( 𝑆 ∪ 𝑇 ) ⊆ 𝐵 ) |
| 10 |
1 4 3 5 6 9
|
lubval |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( 𝑈 ‘ ( 𝑆 ∪ 𝑇 ) ) = ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 11 |
|
clatl |
⊢ ( 𝐾 ∈ CLat → 𝐾 ∈ Lat ) |
| 12 |
11
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → 𝐾 ∈ Lat ) |
| 13 |
1 3
|
clatlubcl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ) |
| 14 |
13
|
3adant3 |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ) |
| 15 |
1 3
|
clatlubcl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ) → ( 𝑈 ‘ 𝑇 ) ∈ 𝐵 ) |
| 16 |
15
|
3adant2 |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( 𝑈 ‘ 𝑇 ) ∈ 𝐵 ) |
| 17 |
1 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ∧ ( 𝑈 ‘ 𝑇 ) ∈ 𝐵 ) → ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ∈ 𝐵 ) |
| 18 |
12 14 16 17
|
syl3anc |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ∈ 𝐵 ) |
| 19 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → 𝐾 ∈ CLat ) |
| 20 |
19 11
|
syl |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → 𝐾 ∈ Lat ) |
| 21 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑆 ⊆ 𝐵 ) |
| 22 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) |
| 23 |
21 22
|
sseldd |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝐵 ) |
| 24 |
19 21 13
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ) |
| 25 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑇 ⊆ 𝐵 ) |
| 26 |
19 25 15
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑈 ‘ 𝑇 ) ∈ 𝐵 ) |
| 27 |
20 24 26 17
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ∈ 𝐵 ) |
| 28 |
1 4 3
|
lubel |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑦 ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵 ) → 𝑦 ( le ‘ 𝐾 ) ( 𝑈 ‘ 𝑆 ) ) |
| 29 |
19 22 21 28
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ( le ‘ 𝐾 ) ( 𝑈 ‘ 𝑆 ) ) |
| 30 |
1 4 2
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ∧ ( 𝑈 ‘ 𝑇 ) ∈ 𝐵 ) → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) |
| 31 |
20 24 26 30
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) |
| 32 |
1 4 20 23 24 27 29 31
|
lattrd |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) |
| 33 |
32
|
ralrimiva |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) |
| 34 |
12
|
adantr |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑇 ) → 𝐾 ∈ Lat ) |
| 35 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑇 ) → 𝑇 ⊆ 𝐵 ) |
| 36 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑇 ) → 𝑦 ∈ 𝑇 ) |
| 37 |
35 36
|
sseldd |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑇 ) → 𝑦 ∈ 𝐵 ) |
| 38 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑇 ) → 𝐾 ∈ CLat ) |
| 39 |
38 35 15
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑇 ) → ( 𝑈 ‘ 𝑇 ) ∈ 𝐵 ) |
| 40 |
18
|
adantr |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑇 ) → ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ∈ 𝐵 ) |
| 41 |
1 4 3
|
lubel |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑦 ∈ 𝑇 ∧ 𝑇 ⊆ 𝐵 ) → 𝑦 ( le ‘ 𝐾 ) ( 𝑈 ‘ 𝑇 ) ) |
| 42 |
38 36 35 41
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑇 ) → 𝑦 ( le ‘ 𝐾 ) ( 𝑈 ‘ 𝑇 ) ) |
| 43 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑇 ) → 𝑆 ⊆ 𝐵 ) |
| 44 |
38 43 13
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑇 ) → ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ) |
| 45 |
1 4 2
|
latlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ∧ ( 𝑈 ‘ 𝑇 ) ∈ 𝐵 ) → ( 𝑈 ‘ 𝑇 ) ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) |
| 46 |
34 44 39 45
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑇 ) → ( 𝑈 ‘ 𝑇 ) ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) |
| 47 |
1 4 34 37 39 40 42 46
|
lattrd |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑇 ) → 𝑦 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) |
| 48 |
47
|
ralrimiva |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) |
| 49 |
|
ralunb |
⊢ ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ∧ ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) ) |
| 50 |
33 48 49
|
sylanbrc |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) |
| 51 |
|
breq2 |
⊢ ( 𝑧 = ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) → ( 𝑦 ( le ‘ 𝐾 ) 𝑧 ↔ 𝑦 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) ) |
| 52 |
51
|
ralbidv |
⊢ ( 𝑧 = ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) → ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 ↔ ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) ) |
| 53 |
|
breq2 |
⊢ ( 𝑧 = ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) → ( 𝑥 ( le ‘ 𝐾 ) 𝑧 ↔ 𝑥 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) ) |
| 54 |
52 53
|
imbi12d |
⊢ ( 𝑧 = ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) → ( ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ↔ ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) → 𝑥 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) ) ) |
| 55 |
54
|
rspcv |
⊢ ( ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ∈ 𝐵 → ( ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) → ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) → 𝑥 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) ) ) |
| 56 |
18 55
|
syl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) → ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) → 𝑥 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) ) ) |
| 57 |
50 56
|
mpid |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) → 𝑥 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) ) |
| 58 |
57
|
imp |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) → 𝑥 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) |
| 59 |
58
|
ad2ant2rl |
⊢ ( ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) → 𝑥 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) |
| 60 |
|
ralunb |
⊢ ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑥 ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 ) ) |
| 61 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝐾 ∈ CLat ) |
| 62 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑆 ⊆ 𝐵 ) |
| 63 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 64 |
1 4 3
|
lubl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑥 ) ) |
| 65 |
61 62 63 64
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑥 ) ) |
| 66 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑇 ⊆ 𝐵 ) |
| 67 |
1 4 3
|
lubl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 → ( 𝑈 ‘ 𝑇 ) ( le ‘ 𝐾 ) 𝑥 ) ) |
| 68 |
61 66 63 67
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 → ( 𝑈 ‘ 𝑇 ) ( le ‘ 𝐾 ) 𝑥 ) ) |
| 69 |
65 68
|
anim12d |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 ) → ( ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑥 ∧ ( 𝑈 ‘ 𝑇 ) ( le ‘ 𝐾 ) 𝑥 ) ) ) |
| 70 |
61 11
|
syl |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
| 71 |
14
|
adantr |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ) |
| 72 |
16
|
adantr |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑈 ‘ 𝑇 ) ∈ 𝐵 ) |
| 73 |
1 4 2
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ∧ ( 𝑈 ‘ 𝑇 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( ( ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑥 ∧ ( 𝑈 ‘ 𝑇 ) ( le ‘ 𝐾 ) 𝑥 ) ↔ ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ( le ‘ 𝐾 ) 𝑥 ) ) |
| 74 |
70 71 72 63 73
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑥 ∧ ( 𝑈 ‘ 𝑇 ) ( le ‘ 𝐾 ) 𝑥 ) ↔ ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ( le ‘ 𝐾 ) 𝑥 ) ) |
| 75 |
69 74
|
sylibd |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 ) → ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ( le ‘ 𝐾 ) 𝑥 ) ) |
| 76 |
60 75
|
biimtrid |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑥 → ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ( le ‘ 𝐾 ) 𝑥 ) ) |
| 77 |
76
|
imp |
⊢ ( ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑥 ) → ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ( le ‘ 𝐾 ) 𝑥 ) |
| 78 |
77
|
adantrr |
⊢ ( ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) → ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ( le ‘ 𝐾 ) 𝑥 ) |
| 79 |
18
|
adantr |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ∈ 𝐵 ) |
| 80 |
1 4
|
latasymb |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑥 ∈ 𝐵 ∧ ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ∈ 𝐵 ) → ( ( 𝑥 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ∧ ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ( le ‘ 𝐾 ) 𝑥 ) ↔ 𝑥 = ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) ) |
| 81 |
70 63 79 80
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ∧ ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ( le ‘ 𝐾 ) 𝑥 ) ↔ 𝑥 = ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) ) |
| 82 |
81
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) → ( ( 𝑥 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ∧ ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ( le ‘ 𝐾 ) 𝑥 ) ↔ 𝑥 = ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) ) |
| 83 |
59 78 82
|
mpbi2and |
⊢ ( ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) → 𝑥 = ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) |
| 84 |
83
|
ex |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) → 𝑥 = ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) ) |
| 85 |
|
elun |
⊢ ( 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) ↔ ( 𝑦 ∈ 𝑆 ∨ 𝑦 ∈ 𝑇 ) ) |
| 86 |
32 47
|
jaodan |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑆 ∨ 𝑦 ∈ 𝑇 ) ) → 𝑦 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) |
| 87 |
85 86
|
sylan2b |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) ) → 𝑦 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) |
| 88 |
87
|
ralrimiva |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) |
| 89 |
|
ralunb |
⊢ ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 ∧ ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 ) ) |
| 90 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 𝐾 ∈ CLat ) |
| 91 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑆 ⊆ 𝐵 ) |
| 92 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) |
| 93 |
1 4 3
|
lubl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
| 94 |
90 91 92 93
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
| 95 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑇 ⊆ 𝐵 ) |
| 96 |
1 4 3
|
lubl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( 𝑈 ‘ 𝑇 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
| 97 |
90 95 92 96
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( 𝑈 ‘ 𝑇 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
| 98 |
94 97
|
anim12d |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 ∧ ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → ( ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ∧ ( 𝑈 ‘ 𝑇 ) ( le ‘ 𝐾 ) 𝑧 ) ) ) |
| 99 |
89 98
|
biimtrid |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ∧ ( 𝑈 ‘ 𝑇 ) ( le ‘ 𝐾 ) 𝑧 ) ) ) |
| 100 |
90 11
|
syl |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
| 101 |
90 91 13
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ) |
| 102 |
90 95 15
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑈 ‘ 𝑇 ) ∈ 𝐵 ) |
| 103 |
1 4 2
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ∧ ( 𝑈 ‘ 𝑇 ) ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ∧ ( 𝑈 ‘ 𝑇 ) ( le ‘ 𝐾 ) 𝑧 ) ↔ ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ( le ‘ 𝐾 ) 𝑧 ) ) |
| 104 |
100 101 102 92 103
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ∧ ( 𝑈 ‘ 𝑇 ) ( le ‘ 𝐾 ) 𝑧 ) ↔ ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ( le ‘ 𝐾 ) 𝑧 ) ) |
| 105 |
99 104
|
sylibd |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ( le ‘ 𝐾 ) 𝑧 ) ) |
| 106 |
105
|
ralrimiva |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ( le ‘ 𝐾 ) 𝑧 ) ) |
| 107 |
|
breq2 |
⊢ ( 𝑥 = ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) → ( 𝑦 ( le ‘ 𝐾 ) 𝑥 ↔ 𝑦 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) ) |
| 108 |
107
|
ralbidv |
⊢ ( 𝑥 = ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) → ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑥 ↔ ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) ) |
| 109 |
|
breq1 |
⊢ ( 𝑥 = ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) → ( 𝑥 ( le ‘ 𝐾 ) 𝑧 ↔ ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ( le ‘ 𝐾 ) 𝑧 ) ) |
| 110 |
109
|
imbi2d |
⊢ ( 𝑥 = ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) → ( ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ↔ ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ( le ‘ 𝐾 ) 𝑧 ) ) ) |
| 111 |
110
|
ralbidv |
⊢ ( 𝑥 = ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) → ( ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ↔ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ( le ‘ 𝐾 ) 𝑧 ) ) ) |
| 112 |
108 111
|
anbi12d |
⊢ ( 𝑥 = ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) → ( ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 113 |
112
|
biimprcd |
⊢ ( ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ( le ‘ 𝐾 ) 𝑧 ) ) → ( 𝑥 = ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) → ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 114 |
88 106 113
|
syl2anc |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( 𝑥 = ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) → ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 115 |
114
|
adantr |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 = ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) → ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 116 |
84 115
|
impbid |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ↔ 𝑥 = ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) ) |
| 117 |
18 116
|
riota5 |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ ( 𝑆 ∪ 𝑇 ) 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) = ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) |
| 118 |
10 117
|
eqtrd |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( 𝑈 ‘ ( 𝑆 ∪ 𝑇 ) ) = ( ( 𝑈 ‘ 𝑆 ) ∨ ( 𝑈 ‘ 𝑇 ) ) ) |