| Step |
Hyp |
Ref |
Expression |
| 1 |
|
paddun.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 2 |
|
paddun.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
| 3 |
|
paddun.o |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
| 4 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → 𝐾 ∈ HL ) |
| 5 |
1 2
|
paddssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( 𝑆 + 𝑇 ) ⊆ 𝐴 ) |
| 6 |
1 2
|
paddunssN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( 𝑆 ∪ 𝑇 ) ⊆ ( 𝑆 + 𝑇 ) ) |
| 7 |
1 3
|
polcon3N |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑆 + 𝑇 ) ⊆ 𝐴 ∧ ( 𝑆 ∪ 𝑇 ) ⊆ ( 𝑆 + 𝑇 ) ) → ( ⊥ ‘ ( 𝑆 + 𝑇 ) ) ⊆ ( ⊥ ‘ ( 𝑆 ∪ 𝑇 ) ) ) |
| 8 |
4 5 6 7
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ⊥ ‘ ( 𝑆 + 𝑇 ) ) ⊆ ( ⊥ ‘ ( 𝑆 ∪ 𝑇 ) ) ) |
| 9 |
|
hlclat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ CLat ) |
| 10 |
9
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → 𝐾 ∈ CLat ) |
| 11 |
|
unss |
⊢ ( ( 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) ↔ ( 𝑆 ∪ 𝑇 ) ⊆ 𝐴 ) |
| 12 |
11
|
biimpi |
⊢ ( ( 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( 𝑆 ∪ 𝑇 ) ⊆ 𝐴 ) |
| 13 |
12
|
3adant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( 𝑆 ∪ 𝑇 ) ⊆ 𝐴 ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 15 |
14 1
|
atssbase |
⊢ 𝐴 ⊆ ( Base ‘ 𝐾 ) |
| 16 |
13 15
|
sstrdi |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( 𝑆 ∪ 𝑇 ) ⊆ ( Base ‘ 𝐾 ) ) |
| 17 |
|
eqid |
⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) |
| 18 |
14 17
|
clatlubcl |
⊢ ( ( 𝐾 ∈ CLat ∧ ( 𝑆 ∪ 𝑇 ) ⊆ ( Base ‘ 𝐾 ) ) → ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 19 |
10 16 18
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 20 |
|
eqid |
⊢ ( pmap ‘ 𝐾 ) = ( pmap ‘ 𝐾 ) |
| 21 |
14 20
|
pmapssbaN |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ⊆ ( Base ‘ 𝐾 ) ) |
| 22 |
4 19 21
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ⊆ ( Base ‘ 𝐾 ) ) |
| 23 |
1 3
|
polssatN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑆 ) ⊆ 𝐴 ) |
| 24 |
23
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑆 ) ⊆ 𝐴 ) |
| 25 |
1 3
|
polssatN |
⊢ ( ( 𝐾 ∈ HL ∧ ( ⊥ ‘ 𝑆 ) ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ 𝐴 ) |
| 26 |
4 24 25
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ 𝐴 ) |
| 27 |
1 3
|
polssatN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑇 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑇 ) ⊆ 𝐴 ) |
| 28 |
27
|
3adant2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑇 ) ⊆ 𝐴 ) |
| 29 |
1 3
|
polssatN |
⊢ ( ( 𝐾 ∈ HL ∧ ( ⊥ ‘ 𝑇 ) ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ⊆ 𝐴 ) |
| 30 |
4 28 29
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ⊆ 𝐴 ) |
| 31 |
4 26 30
|
3jca |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( 𝐾 ∈ HL ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ⊆ 𝐴 ) ) |
| 32 |
1 3
|
2polssN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ) → 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| 33 |
32
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| 34 |
1 3
|
2polssN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑇 ⊆ 𝐴 ) → 𝑇 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ) |
| 35 |
34
|
3adant2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → 𝑇 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ) |
| 36 |
33 35
|
jca |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ∧ 𝑇 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ) ) |
| 37 |
1 2
|
paddss12 |
⊢ ( ( 𝐾 ∈ HL ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ⊆ 𝐴 ) → ( ( 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ∧ 𝑇 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ) → ( 𝑆 + 𝑇 ) ⊆ ( ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) + ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ) ) ) |
| 38 |
31 36 37
|
sylc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( 𝑆 + 𝑇 ) ⊆ ( ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) + ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ) ) |
| 39 |
17 1 20 3
|
2polvalN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) ) |
| 40 |
39
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) ) |
| 41 |
17 1 20 3
|
2polvalN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑇 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) |
| 42 |
41
|
3adant2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) |
| 43 |
40 42
|
oveq12d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) + ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) + ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) ) |
| 44 |
38 43
|
sseqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( 𝑆 + 𝑇 ) ⊆ ( ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) + ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) ) |
| 45 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
| 46 |
45
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → 𝐾 ∈ Lat ) |
| 47 |
|
simp2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → 𝑆 ⊆ 𝐴 ) |
| 48 |
47 15
|
sstrdi |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → 𝑆 ⊆ ( Base ‘ 𝐾 ) ) |
| 49 |
14 17
|
clatlubcl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ ( Base ‘ 𝐾 ) ) → ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 50 |
10 48 49
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 51 |
|
simp3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → 𝑇 ⊆ 𝐴 ) |
| 52 |
51 15
|
sstrdi |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → 𝑇 ⊆ ( Base ‘ 𝐾 ) ) |
| 53 |
14 17
|
clatlubcl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ ( Base ‘ 𝐾 ) ) → ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
| 54 |
10 52 53
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
| 55 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
| 56 |
14 55 20 2
|
pmapjoin |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) + ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) ⊆ ( ( pmap ‘ 𝐾 ) ‘ ( ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) ) |
| 57 |
46 50 54 56
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) + ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) ⊆ ( ( pmap ‘ 𝐾 ) ‘ ( ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) ) |
| 58 |
44 57
|
sstrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( 𝑆 + 𝑇 ) ⊆ ( ( pmap ‘ 𝐾 ) ‘ ( ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) ) |
| 59 |
14 55 17
|
lubun |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ ( Base ‘ 𝐾 ) ∧ 𝑇 ⊆ ( Base ‘ 𝐾 ) ) → ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) = ( ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) |
| 60 |
10 48 52 59
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) = ( ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) |
| 61 |
60
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) ) |
| 62 |
58 61
|
sseqtrrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( 𝑆 + 𝑇 ) ⊆ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ) |
| 63 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 64 |
14 63 17
|
lubss |
⊢ ( ( 𝐾 ∈ CLat ∧ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ⊆ ( Base ‘ 𝐾 ) ∧ ( 𝑆 + 𝑇 ) ⊆ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ) → ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 + 𝑇 ) ) ( le ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ) ) |
| 65 |
10 22 62 64
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 + 𝑇 ) ) ( le ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ) ) |
| 66 |
5 15
|
sstrdi |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( 𝑆 + 𝑇 ) ⊆ ( Base ‘ 𝐾 ) ) |
| 67 |
14 17
|
clatlubcl |
⊢ ( ( 𝐾 ∈ CLat ∧ ( 𝑆 + 𝑇 ) ⊆ ( Base ‘ 𝐾 ) ) → ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 + 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 68 |
10 66 67
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 + 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 69 |
14 17
|
clatlubcl |
⊢ ( ( 𝐾 ∈ CLat ∧ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ⊆ ( Base ‘ 𝐾 ) ) → ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 70 |
10 22 69
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 71 |
14 63 20
|
pmaple |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 + 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 + 𝑇 ) ) ( le ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ) ↔ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 + 𝑇 ) ) ) ⊆ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ) ) ) ) |
| 72 |
4 68 70 71
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 + 𝑇 ) ) ( le ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ) ↔ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 + 𝑇 ) ) ) ⊆ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ) ) ) ) |
| 73 |
65 72
|
mpbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 + 𝑇 ) ) ) ⊆ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ) ) ) |
| 74 |
17 1 20 3
|
2polvalN |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑆 + 𝑇 ) ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑆 + 𝑇 ) ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 + 𝑇 ) ) ) ) |
| 75 |
4 5 74
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑆 + 𝑇 ) ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 + 𝑇 ) ) ) ) |
| 76 |
17 1 20 3
|
2polvalN |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑆 ∪ 𝑇 ) ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑆 ∪ 𝑇 ) ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ) |
| 77 |
4 13 76
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑆 ∪ 𝑇 ) ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ) |
| 78 |
17 1 20
|
2pmaplubN |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑆 ∪ 𝑇 ) ⊆ 𝐴 ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ) |
| 79 |
4 13 78
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ) |
| 80 |
77 79
|
eqtr4d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑆 ∪ 𝑇 ) ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆 ∪ 𝑇 ) ) ) ) ) ) |
| 81 |
73 75 80
|
3sstr4d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑆 + 𝑇 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝑆 ∪ 𝑇 ) ) ) ) |
| 82 |
1 3
|
2polcon4bN |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑆 + 𝑇 ) ⊆ 𝐴 ∧ ( 𝑆 ∪ 𝑇 ) ⊆ 𝐴 ) → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝑆 + 𝑇 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝑆 ∪ 𝑇 ) ) ) ↔ ( ⊥ ‘ ( 𝑆 ∪ 𝑇 ) ) ⊆ ( ⊥ ‘ ( 𝑆 + 𝑇 ) ) ) ) |
| 83 |
4 5 13 82
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝑆 + 𝑇 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝑆 ∪ 𝑇 ) ) ) ↔ ( ⊥ ‘ ( 𝑆 ∪ 𝑇 ) ) ⊆ ( ⊥ ‘ ( 𝑆 + 𝑇 ) ) ) ) |
| 84 |
81 83
|
mpbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ⊥ ‘ ( 𝑆 ∪ 𝑇 ) ) ⊆ ( ⊥ ‘ ( 𝑆 + 𝑇 ) ) ) |
| 85 |
8 84
|
eqssd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴 ) → ( ⊥ ‘ ( 𝑆 + 𝑇 ) ) = ( ⊥ ‘ ( 𝑆 ∪ 𝑇 ) ) ) |