| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfzuz | ⊢ ( 𝐼  ∈  ( 2 ... 𝑁 )  →  𝐼  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  𝐼  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 3 |  | exprmfct | ⊢ ( 𝐼  ∈  ( ℤ≥ ‘ 2 )  →  ∃ 𝑝  ∈  ℙ 𝑝  ∥  𝐼 ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  ∃ 𝑝  ∈  ℙ 𝑝  ∥  𝐼 ) | 
						
							| 5 |  | prmz | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℤ ) | 
						
							| 6 |  | eluz2nn | ⊢ ( 𝐼  ∈  ( ℤ≥ ‘ 2 )  →  𝐼  ∈  ℕ ) | 
						
							| 7 | 1 6 | syl | ⊢ ( 𝐼  ∈  ( 2 ... 𝑁 )  →  𝐼  ∈  ℕ ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  𝐼  ∈  ℕ ) | 
						
							| 9 |  | dvdsle | ⊢ ( ( 𝑝  ∈  ℤ  ∧  𝐼  ∈  ℕ )  →  ( 𝑝  ∥  𝐼  →  𝑝  ≤  𝐼 ) ) | 
						
							| 10 | 5 8 9 | syl2anr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  ∥  𝐼  →  𝑝  ≤  𝐼 ) ) | 
						
							| 11 |  | elfzle2 | ⊢ ( 𝐼  ∈  ( 2 ... 𝑁 )  →  𝐼  ≤  𝑁 ) | 
						
							| 12 | 11 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  ∧  𝑝  ∈  ℙ )  →  𝐼  ≤  𝑁 ) | 
						
							| 13 | 5 | zred | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℝ ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  ∧  𝑝  ∈  ℙ )  →  𝑝  ∈  ℝ ) | 
						
							| 15 |  | elfzelz | ⊢ ( 𝐼  ∈  ( 2 ... 𝑁 )  →  𝐼  ∈  ℤ ) | 
						
							| 16 | 15 | zred | ⊢ ( 𝐼  ∈  ( 2 ... 𝑁 )  →  𝐼  ∈  ℝ ) | 
						
							| 17 | 16 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  ∧  𝑝  ∈  ℙ )  →  𝐼  ∈  ℝ ) | 
						
							| 18 |  | nnre | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ ) | 
						
							| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  ∧  𝑝  ∈  ℙ )  →  𝑁  ∈  ℝ ) | 
						
							| 20 |  | letr | ⊢ ( ( 𝑝  ∈  ℝ  ∧  𝐼  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( ( 𝑝  ≤  𝐼  ∧  𝐼  ≤  𝑁 )  →  𝑝  ≤  𝑁 ) ) | 
						
							| 21 | 14 17 19 20 | syl3anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  ∧  𝑝  ∈  ℙ )  →  ( ( 𝑝  ≤  𝐼  ∧  𝐼  ≤  𝑁 )  →  𝑝  ≤  𝑁 ) ) | 
						
							| 22 | 12 21 | mpan2d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  ≤  𝐼  →  𝑝  ≤  𝑁 ) ) | 
						
							| 23 | 10 22 | syld | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  ∥  𝐼  →  𝑝  ≤  𝑁 ) ) | 
						
							| 24 | 23 | ancrd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  ∥  𝐼  →  ( 𝑝  ≤  𝑁  ∧  𝑝  ∥  𝐼 ) ) ) | 
						
							| 25 | 24 | reximdva | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  ( ∃ 𝑝  ∈  ℙ 𝑝  ∥  𝐼  →  ∃ 𝑝  ∈  ℙ ( 𝑝  ≤  𝑁  ∧  𝑝  ∥  𝐼 ) ) ) | 
						
							| 26 | 4 25 | mpd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 2 ... 𝑁 ) )  →  ∃ 𝑝  ∈  ℙ ( 𝑝  ≤  𝑁  ∧  𝑝  ∥  𝐼 ) ) |