| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elpri |
⊢ ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) |
| 2 |
|
eleq1 |
⊢ ( 𝑣 = 𝐵 → ( 𝑣 ∈ { 𝐴 , 𝐵 } ↔ 𝐵 ∈ { 𝐴 , 𝐵 } ) ) |
| 3 |
|
simprrr |
⊢ ( ( 𝐶 = 𝐴 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐵 ∈ 𝑉 ) |
| 4 |
|
necom |
⊢ ( 𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴 ) |
| 5 |
|
neeq2 |
⊢ ( 𝐴 = 𝐶 → ( 𝐵 ≠ 𝐴 ↔ 𝐵 ≠ 𝐶 ) ) |
| 6 |
5
|
eqcoms |
⊢ ( 𝐶 = 𝐴 → ( 𝐵 ≠ 𝐴 ↔ 𝐵 ≠ 𝐶 ) ) |
| 7 |
6
|
biimpcd |
⊢ ( 𝐵 ≠ 𝐴 → ( 𝐶 = 𝐴 → 𝐵 ≠ 𝐶 ) ) |
| 8 |
4 7
|
sylbi |
⊢ ( 𝐴 ≠ 𝐵 → ( 𝐶 = 𝐴 → 𝐵 ≠ 𝐶 ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐶 = 𝐴 → 𝐵 ≠ 𝐶 ) ) |
| 10 |
9
|
impcom |
⊢ ( ( 𝐶 = 𝐴 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐵 ≠ 𝐶 ) |
| 11 |
3 10
|
eldifsnd |
⊢ ( ( 𝐶 = 𝐴 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐵 ∈ ( 𝑉 ∖ { 𝐶 } ) ) |
| 12 |
|
prid2g |
⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
| 14 |
13
|
ad2antll |
⊢ ( ( 𝐶 = 𝐴 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
| 15 |
2 11 14
|
rspcedvdw |
⊢ ( ( 𝐶 = 𝐴 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) |
| 16 |
15
|
ex |
⊢ ( 𝐶 = 𝐴 → ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) ) |
| 17 |
|
eleq1 |
⊢ ( 𝑣 = 𝐴 → ( 𝑣 ∈ { 𝐴 , 𝐵 } ↔ 𝐴 ∈ { 𝐴 , 𝐵 } ) ) |
| 18 |
|
simprrl |
⊢ ( ( 𝐶 = 𝐵 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐴 ∈ 𝑉 ) |
| 19 |
|
neeq2 |
⊢ ( 𝐵 = 𝐶 → ( 𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶 ) ) |
| 20 |
19
|
eqcoms |
⊢ ( 𝐶 = 𝐵 → ( 𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶 ) ) |
| 21 |
20
|
biimpcd |
⊢ ( 𝐴 ≠ 𝐵 → ( 𝐶 = 𝐵 → 𝐴 ≠ 𝐶 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐶 = 𝐵 → 𝐴 ≠ 𝐶 ) ) |
| 23 |
22
|
impcom |
⊢ ( ( 𝐶 = 𝐵 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐴 ≠ 𝐶 ) |
| 24 |
18 23
|
eldifsnd |
⊢ ( ( 𝐶 = 𝐵 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐴 ∈ ( 𝑉 ∖ { 𝐶 } ) ) |
| 25 |
|
prid1g |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
| 27 |
26
|
ad2antll |
⊢ ( ( 𝐶 = 𝐵 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
| 28 |
17 24 27
|
rspcedvdw |
⊢ ( ( 𝐶 = 𝐵 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) |
| 29 |
28
|
ex |
⊢ ( 𝐶 = 𝐵 → ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) ) |
| 30 |
16 29
|
jaoi |
⊢ ( ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) → ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) ) |
| 31 |
1 30
|
syl |
⊢ ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) ) |
| 32 |
31
|
3impib |
⊢ ( ( 𝐶 ∈ { 𝐴 , 𝐵 } ∧ 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) |