| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfvalfi.g | ⊢ 𝐺  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 2 |  | psgnfvalfi.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | psgnfvalfi.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ 𝐷 ) | 
						
							| 4 |  | psgnfvalfi.n | ⊢ 𝑁  =  ( pmSgn ‘ 𝐷 ) | 
						
							| 5 |  | eqid | ⊢ { 𝑝  ∈  𝐵  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin }  =  { 𝑝  ∈  𝐵  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin } | 
						
							| 6 | 1 2 5 3 4 | psgnfval | ⊢ 𝑁  =  ( 𝑥  ∈  { 𝑝  ∈  𝐵  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin }  ↦  ( ℩ 𝑠 ∃ 𝑤  ∈  Word  𝑇 ( 𝑥  =  ( 𝐺  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) | 
						
							| 7 | 1 2 | sygbasnfpfi | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑝  ∈  𝐵 )  →  dom  ( 𝑝  ∖   I  )  ∈  Fin ) | 
						
							| 8 | 7 | ralrimiva | ⊢ ( 𝐷  ∈  Fin  →  ∀ 𝑝  ∈  𝐵 dom  ( 𝑝  ∖   I  )  ∈  Fin ) | 
						
							| 9 |  | rabid2 | ⊢ ( 𝐵  =  { 𝑝  ∈  𝐵  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin }  ↔  ∀ 𝑝  ∈  𝐵 dom  ( 𝑝  ∖   I  )  ∈  Fin ) | 
						
							| 10 | 8 9 | sylibr | ⊢ ( 𝐷  ∈  Fin  →  𝐵  =  { 𝑝  ∈  𝐵  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin } ) | 
						
							| 11 | 10 | eqcomd | ⊢ ( 𝐷  ∈  Fin  →  { 𝑝  ∈  𝐵  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin }  =  𝐵 ) | 
						
							| 12 | 11 | mpteq1d | ⊢ ( 𝐷  ∈  Fin  →  ( 𝑥  ∈  { 𝑝  ∈  𝐵  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin }  ↦  ( ℩ 𝑠 ∃ 𝑤  ∈  Word  𝑇 ( 𝑥  =  ( 𝐺  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) )  =  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑠 ∃ 𝑤  ∈  Word  𝑇 ( 𝑥  =  ( 𝐺  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) ) | 
						
							| 13 | 6 12 | eqtrid | ⊢ ( 𝐷  ∈  Fin  →  𝑁  =  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑠 ∃ 𝑤  ∈  Word  𝑇 ( 𝑥  =  ( 𝐺  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) ) |