| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psubclin.c | ⊢ 𝐶  =  ( PSubCl ‘ 𝐾 ) | 
						
							| 2 |  | simp1 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  →  𝐾  ∈  HL ) | 
						
							| 3 |  | hlclat | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  CLat ) | 
						
							| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  →  𝐾  ∈  CLat ) | 
						
							| 5 |  | eqid | ⊢ ( Atoms ‘ 𝐾 )  =  ( Atoms ‘ 𝐾 ) | 
						
							| 6 | 5 1 | psubclssatN | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶 )  →  𝑋  ⊆  ( Atoms ‘ 𝐾 ) ) | 
						
							| 7 | 6 | 3adant3 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  →  𝑋  ⊆  ( Atoms ‘ 𝐾 ) ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 9 | 8 5 | atssbase | ⊢ ( Atoms ‘ 𝐾 )  ⊆  ( Base ‘ 𝐾 ) | 
						
							| 10 | 7 9 | sstrdi | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  →  𝑋  ⊆  ( Base ‘ 𝐾 ) ) | 
						
							| 11 |  | eqid | ⊢ ( lub ‘ 𝐾 )  =  ( lub ‘ 𝐾 ) | 
						
							| 12 | 8 11 | clatlubcl | ⊢ ( ( 𝐾  ∈  CLat  ∧  𝑋  ⊆  ( Base ‘ 𝐾 ) )  →  ( ( lub ‘ 𝐾 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 13 | 4 10 12 | syl2anc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  →  ( ( lub ‘ 𝐾 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 14 | 5 1 | psubclssatN | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑌  ∈  𝐶 )  →  𝑌  ⊆  ( Atoms ‘ 𝐾 ) ) | 
						
							| 15 | 14 | 3adant2 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  →  𝑌  ⊆  ( Atoms ‘ 𝐾 ) ) | 
						
							| 16 | 15 9 | sstrdi | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  →  𝑌  ⊆  ( Base ‘ 𝐾 ) ) | 
						
							| 17 | 8 11 | clatlubcl | ⊢ ( ( 𝐾  ∈  CLat  ∧  𝑌  ⊆  ( Base ‘ 𝐾 ) )  →  ( ( lub ‘ 𝐾 ) ‘ 𝑌 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 18 | 4 16 17 | syl2anc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  →  ( ( lub ‘ 𝐾 ) ‘ 𝑌 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 19 |  | eqid | ⊢ ( meet ‘ 𝐾 )  =  ( meet ‘ 𝐾 ) | 
						
							| 20 |  | eqid | ⊢ ( pmap ‘ 𝐾 )  =  ( pmap ‘ 𝐾 ) | 
						
							| 21 | 8 19 5 20 | pmapmeet | ⊢ ( ( 𝐾  ∈  HL  ∧  ( ( lub ‘ 𝐾 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( lub ‘ 𝐾 ) ‘ 𝑌 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( pmap ‘ 𝐾 ) ‘ ( ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) )  =  ( ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) )  ∩  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) | 
						
							| 22 | 2 13 18 21 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  →  ( ( pmap ‘ 𝐾 ) ‘ ( ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) )  =  ( ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) )  ∩  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) | 
						
							| 23 | 11 20 1 | pmapidclN | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶 )  →  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 24 | 23 | 3adant3 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  →  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 25 | 11 20 1 | pmapidclN | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑌  ∈  𝐶 )  →  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) )  =  𝑌 ) | 
						
							| 26 | 25 | 3adant2 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  →  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) )  =  𝑌 ) | 
						
							| 27 | 24 26 | ineq12d | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  →  ( ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) )  ∩  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) )  =  ( 𝑋  ∩  𝑌 ) ) | 
						
							| 28 | 22 27 | eqtrd | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  →  ( ( pmap ‘ 𝐾 ) ‘ ( ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) )  =  ( 𝑋  ∩  𝑌 ) ) | 
						
							| 29 |  | hllat | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat ) | 
						
							| 30 | 29 | 3ad2ant1 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  →  𝐾  ∈  Lat ) | 
						
							| 31 | 8 19 | latmcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( lub ‘ 𝐾 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( lub ‘ 𝐾 ) ‘ 𝑌 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 32 | 30 13 18 31 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  →  ( ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 33 | 8 20 1 | pmapsubclN | ⊢ ( ( 𝐾  ∈  HL  ∧  ( ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( pmap ‘ 𝐾 ) ‘ ( ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) )  ∈  𝐶 ) | 
						
							| 34 | 2 32 33 | syl2anc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  →  ( ( pmap ‘ 𝐾 ) ‘ ( ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) )  ∈  𝐶 ) | 
						
							| 35 | 28 34 | eqeltrrd | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  →  ( 𝑋  ∩  𝑌 )  ∈  𝐶 ) |