Metamath Proof Explorer


Theorem qirropth

Description: This lemma implements the concept of "equate rational and irrational parts", used to prove many arithmetical properties of the X and Y sequences. (Contributed by Stefan O'Rear, 21-Sep-2014)

Ref Expression
Assertion qirropth ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) → ( ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ↔ ( 𝐵 = 𝐷𝐶 = 𝐸 ) ) )

Proof

Step Hyp Ref Expression
1 eldifn ( 𝐴 ∈ ( ℂ ∖ ℚ ) → ¬ 𝐴 ∈ ℚ )
2 1 3ad2ant1 ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) → ¬ 𝐴 ∈ ℚ )
3 2 adantr ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → ¬ 𝐴 ∈ ℚ )
4 simpll1 ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → 𝐴 ∈ ( ℂ ∖ ℚ ) )
5 4 eldifad ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → 𝐴 ∈ ℂ )
6 simp2r ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) → 𝐶 ∈ ℚ )
7 6 ad2antrr ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → 𝐶 ∈ ℚ )
8 qcn ( 𝐶 ∈ ℚ → 𝐶 ∈ ℂ )
9 7 8 syl ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → 𝐶 ∈ ℂ )
10 simp3r ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) → 𝐸 ∈ ℚ )
11 10 ad2antrr ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → 𝐸 ∈ ℚ )
12 qcn ( 𝐸 ∈ ℚ → 𝐸 ∈ ℂ )
13 11 12 syl ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → 𝐸 ∈ ℂ )
14 5 9 13 subdid ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( 𝐴 · ( 𝐶𝐸 ) ) = ( ( 𝐴 · 𝐶 ) − ( 𝐴 · 𝐸 ) ) )
15 qsubcl ( ( 𝐶 ∈ ℚ ∧ 𝐸 ∈ ℚ ) → ( 𝐶𝐸 ) ∈ ℚ )
16 7 11 15 syl2anc ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( 𝐶𝐸 ) ∈ ℚ )
17 qcn ( ( 𝐶𝐸 ) ∈ ℚ → ( 𝐶𝐸 ) ∈ ℂ )
18 16 17 syl ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( 𝐶𝐸 ) ∈ ℂ )
19 18 5 mulcomd ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( ( 𝐶𝐸 ) · 𝐴 ) = ( 𝐴 · ( 𝐶𝐸 ) ) )
20 simplr ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) )
21 simp2l ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) → 𝐵 ∈ ℚ )
22 21 ad2antrr ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → 𝐵 ∈ ℚ )
23 qcn ( 𝐵 ∈ ℚ → 𝐵 ∈ ℂ )
24 22 23 syl ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → 𝐵 ∈ ℂ )
25 5 9 mulcld ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( 𝐴 · 𝐶 ) ∈ ℂ )
26 simp3l ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) → 𝐷 ∈ ℚ )
27 26 ad2antrr ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → 𝐷 ∈ ℚ )
28 qcn ( 𝐷 ∈ ℚ → 𝐷 ∈ ℂ )
29 27 28 syl ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → 𝐷 ∈ ℂ )
30 5 13 mulcld ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( 𝐴 · 𝐸 ) ∈ ℂ )
31 24 25 29 30 addsubeq4d ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ↔ ( 𝐷𝐵 ) = ( ( 𝐴 · 𝐶 ) − ( 𝐴 · 𝐸 ) ) ) )
32 20 31 mpbid ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( 𝐷𝐵 ) = ( ( 𝐴 · 𝐶 ) − ( 𝐴 · 𝐸 ) ) )
33 14 19 32 3eqtr4d ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( ( 𝐶𝐸 ) · 𝐴 ) = ( 𝐷𝐵 ) )
34 qsubcl ( ( 𝐷 ∈ ℚ ∧ 𝐵 ∈ ℚ ) → ( 𝐷𝐵 ) ∈ ℚ )
35 27 22 34 syl2anc ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( 𝐷𝐵 ) ∈ ℚ )
36 qcn ( ( 𝐷𝐵 ) ∈ ℚ → ( 𝐷𝐵 ) ∈ ℂ )
37 35 36 syl ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( 𝐷𝐵 ) ∈ ℂ )
38 simpr ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ¬ 𝐶 = 𝐸 )
39 subeq0 ( ( 𝐶 ∈ ℂ ∧ 𝐸 ∈ ℂ ) → ( ( 𝐶𝐸 ) = 0 ↔ 𝐶 = 𝐸 ) )
40 39 necon3abid ( ( 𝐶 ∈ ℂ ∧ 𝐸 ∈ ℂ ) → ( ( 𝐶𝐸 ) ≠ 0 ↔ ¬ 𝐶 = 𝐸 ) )
41 9 13 40 syl2anc ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( ( 𝐶𝐸 ) ≠ 0 ↔ ¬ 𝐶 = 𝐸 ) )
42 38 41 mpbird ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( 𝐶𝐸 ) ≠ 0 )
43 37 18 5 42 divmuld ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( ( ( 𝐷𝐵 ) / ( 𝐶𝐸 ) ) = 𝐴 ↔ ( ( 𝐶𝐸 ) · 𝐴 ) = ( 𝐷𝐵 ) ) )
44 33 43 mpbird ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( ( 𝐷𝐵 ) / ( 𝐶𝐸 ) ) = 𝐴 )
45 qdivcl ( ( ( 𝐷𝐵 ) ∈ ℚ ∧ ( 𝐶𝐸 ) ∈ ℚ ∧ ( 𝐶𝐸 ) ≠ 0 ) → ( ( 𝐷𝐵 ) / ( 𝐶𝐸 ) ) ∈ ℚ )
46 35 16 42 45 syl3anc ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( ( 𝐷𝐵 ) / ( 𝐶𝐸 ) ) ∈ ℚ )
47 44 46 eqeltrrd ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → 𝐴 ∈ ℚ )
48 47 ex ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → ( ¬ 𝐶 = 𝐸𝐴 ∈ ℚ ) )
49 3 48 mt3d ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → 𝐶 = 𝐸 )
50 simpl2l ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → 𝐵 ∈ ℚ )
51 50 23 syl ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → 𝐵 ∈ ℂ )
52 51 adantr ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ 𝐶 = 𝐸 ) → 𝐵 ∈ ℂ )
53 simpl3l ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → 𝐷 ∈ ℚ )
54 53 28 syl ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → 𝐷 ∈ ℂ )
55 54 adantr ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ 𝐶 = 𝐸 ) → 𝐷 ∈ ℂ )
56 simpl1 ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → 𝐴 ∈ ( ℂ ∖ ℚ ) )
57 56 eldifad ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → 𝐴 ∈ ℂ )
58 simpl3r ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → 𝐸 ∈ ℚ )
59 58 12 syl ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → 𝐸 ∈ ℂ )
60 57 59 mulcld ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → ( 𝐴 · 𝐸 ) ∈ ℂ )
61 60 adantr ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ 𝐶 = 𝐸 ) → ( 𝐴 · 𝐸 ) ∈ ℂ )
62 simpr ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ 𝐶 = 𝐸 ) → 𝐶 = 𝐸 )
63 62 eqcomd ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ 𝐶 = 𝐸 ) → 𝐸 = 𝐶 )
64 63 oveq2d ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ 𝐶 = 𝐸 ) → ( 𝐴 · 𝐸 ) = ( 𝐴 · 𝐶 ) )
65 64 oveq2d ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ 𝐶 = 𝐸 ) → ( 𝐵 + ( 𝐴 · 𝐸 ) ) = ( 𝐵 + ( 𝐴 · 𝐶 ) ) )
66 simplr ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ 𝐶 = 𝐸 ) → ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) )
67 65 66 eqtrd ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ 𝐶 = 𝐸 ) → ( 𝐵 + ( 𝐴 · 𝐸 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) )
68 52 55 61 67 addcan2ad ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ 𝐶 = 𝐸 ) → 𝐵 = 𝐷 )
69 68 ex ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → ( 𝐶 = 𝐸𝐵 = 𝐷 ) )
70 49 69 jcai ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → ( 𝐶 = 𝐸𝐵 = 𝐷 ) )
71 70 ancomd ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → ( 𝐵 = 𝐷𝐶 = 𝐸 ) )
72 71 ex ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) → ( ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) → ( 𝐵 = 𝐷𝐶 = 𝐸 ) ) )
73 id ( 𝐵 = 𝐷𝐵 = 𝐷 )
74 oveq2 ( 𝐶 = 𝐸 → ( 𝐴 · 𝐶 ) = ( 𝐴 · 𝐸 ) )
75 73 74 oveqan12d ( ( 𝐵 = 𝐷𝐶 = 𝐸 ) → ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) )
76 72 75 impbid1 ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) → ( ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ↔ ( 𝐵 = 𝐷𝐶 = 𝐸 ) ) )