| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rmspecnonsq | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 𝐴 ↑ 2 )  −  1 )  ∈  ( ℕ  ∖  ◻NN ) ) | 
						
							| 2 |  | eluzelz | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  𝐴  ∈  ℤ ) | 
						
							| 3 |  | zsqcl | ⊢ ( 𝐴  ∈  ℤ  →  ( 𝐴 ↑ 2 )  ∈  ℤ ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐴 ↑ 2 )  ∈  ℤ ) | 
						
							| 5 | 4 | zred | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐴 ↑ 2 )  ∈  ℝ ) | 
						
							| 6 |  | 1red | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  1  ∈  ℝ ) | 
						
							| 7 | 5 6 | resubcld | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 𝐴 ↑ 2 )  −  1 )  ∈  ℝ ) | 
						
							| 8 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 9 | 8 | a1i | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 1 ↑ 2 )  =  1 ) | 
						
							| 10 |  | eluz2b2 | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝐴  ∈  ℕ  ∧  1  <  𝐴 ) ) | 
						
							| 11 | 10 | simprbi | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  1  <  𝐴 ) | 
						
							| 12 |  | eluzelre | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  𝐴  ∈  ℝ ) | 
						
							| 13 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 14 | 13 | a1i | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  0  ≤  1 ) | 
						
							| 15 |  | eluzge2nn0 | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  𝐴  ∈  ℕ0 ) | 
						
							| 16 | 15 | nn0ge0d | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  0  ≤  𝐴 ) | 
						
							| 17 | 6 12 14 16 | lt2sqd | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 1  <  𝐴  ↔  ( 1 ↑ 2 )  <  ( 𝐴 ↑ 2 ) ) ) | 
						
							| 18 | 11 17 | mpbid | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 1 ↑ 2 )  <  ( 𝐴 ↑ 2 ) ) | 
						
							| 19 | 9 18 | eqbrtrrd | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  1  <  ( 𝐴 ↑ 2 ) ) | 
						
							| 20 | 6 5 | posdifd | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 1  <  ( 𝐴 ↑ 2 )  ↔  0  <  ( ( 𝐴 ↑ 2 )  −  1 ) ) ) | 
						
							| 21 | 19 20 | mpbid | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  0  <  ( ( 𝐴 ↑ 2 )  −  1 ) ) | 
						
							| 22 | 7 21 | elrpd | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 𝐴 ↑ 2 )  −  1 )  ∈  ℝ+ ) | 
						
							| 23 | 22 | rpsqrtcld | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) )  ∈  ℝ+ ) | 
						
							| 24 | 23 | rpred | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) )  ∈  ℝ ) | 
						
							| 25 | 24 | recnd | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) )  ∈  ℂ ) | 
						
							| 26 | 25 | mulridd | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) )  ·  1 )  =  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐴  +  ( ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) )  ·  1 ) )  =  ( 𝐴  +  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) ) ) | 
						
							| 28 |  | pell1qrss14 | ⊢ ( ( ( 𝐴 ↑ 2 )  −  1 )  ∈  ( ℕ  ∖  ◻NN )  →  ( Pell1QR ‘ ( ( 𝐴 ↑ 2 )  −  1 ) )  ⊆  ( Pell14QR ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) ) | 
						
							| 29 | 1 28 | syl | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( Pell1QR ‘ ( ( 𝐴 ↑ 2 )  −  1 ) )  ⊆  ( Pell14QR ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) ) | 
						
							| 30 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 31 | 30 | a1i | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  1  ∈  ℕ0 ) | 
						
							| 32 | 8 | oveq2i | ⊢ ( ( ( 𝐴 ↑ 2 )  −  1 )  ·  ( 1 ↑ 2 ) )  =  ( ( ( 𝐴 ↑ 2 )  −  1 )  ·  1 ) | 
						
							| 33 | 7 | recnd | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 𝐴 ↑ 2 )  −  1 )  ∈  ℂ ) | 
						
							| 34 | 33 | mulridd | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( ( ( 𝐴 ↑ 2 )  −  1 )  ·  1 )  =  ( ( 𝐴 ↑ 2 )  −  1 ) ) | 
						
							| 35 | 32 34 | eqtrid | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( ( ( 𝐴 ↑ 2 )  −  1 )  ·  ( 1 ↑ 2 ) )  =  ( ( 𝐴 ↑ 2 )  −  1 ) ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 𝐴 ↑ 2 )  −  ( ( ( 𝐴 ↑ 2 )  −  1 )  ·  ( 1 ↑ 2 ) ) )  =  ( ( 𝐴 ↑ 2 )  −  ( ( 𝐴 ↑ 2 )  −  1 ) ) ) | 
						
							| 37 | 5 | recnd | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 38 |  | 1cnd | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  1  ∈  ℂ ) | 
						
							| 39 | 37 38 | nncand | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 𝐴 ↑ 2 )  −  ( ( 𝐴 ↑ 2 )  −  1 ) )  =  1 ) | 
						
							| 40 | 36 39 | eqtrd | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 𝐴 ↑ 2 )  −  ( ( ( 𝐴 ↑ 2 )  −  1 )  ·  ( 1 ↑ 2 ) ) )  =  1 ) | 
						
							| 41 |  | pellqrexplicit | ⊢ ( ( ( ( ( 𝐴 ↑ 2 )  −  1 )  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℕ0  ∧  1  ∈  ℕ0 )  ∧  ( ( 𝐴 ↑ 2 )  −  ( ( ( 𝐴 ↑ 2 )  −  1 )  ·  ( 1 ↑ 2 ) ) )  =  1 )  →  ( 𝐴  +  ( ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) )  ·  1 ) )  ∈  ( Pell1QR ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) ) | 
						
							| 42 | 1 15 31 40 41 | syl31anc | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐴  +  ( ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) )  ·  1 ) )  ∈  ( Pell1QR ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) ) | 
						
							| 43 | 29 42 | sseldd | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐴  +  ( ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) )  ·  1 ) )  ∈  ( Pell14QR ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) ) | 
						
							| 44 | 27 43 | eqeltrrd | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐴  +  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) )  ∈  ( Pell14QR ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) ) | 
						
							| 45 | 6 24 | readdcld | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 1  +  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) )  ∈  ℝ ) | 
						
							| 46 | 12 24 | readdcld | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐴  +  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) )  ∈  ℝ ) | 
						
							| 47 | 6 23 | ltaddrpd | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  1  <  ( 1  +  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) ) ) | 
						
							| 48 | 6 12 24 11 | ltadd1dd | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 1  +  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) )  <  ( 𝐴  +  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) ) ) | 
						
							| 49 | 6 45 46 47 48 | lttrd | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  1  <  ( 𝐴  +  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) ) ) | 
						
							| 50 |  | pellfundlb | ⊢ ( ( ( ( 𝐴 ↑ 2 )  −  1 )  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝐴  +  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) )  ∈  ( Pell14QR ‘ ( ( 𝐴 ↑ 2 )  −  1 ) )  ∧  1  <  ( 𝐴  +  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) ) )  →  ( PellFund ‘ ( ( 𝐴 ↑ 2 )  −  1 ) )  ≤  ( 𝐴  +  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) ) ) | 
						
							| 51 | 1 44 49 50 | syl3anc | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( PellFund ‘ ( ( 𝐴 ↑ 2 )  −  1 ) )  ≤  ( 𝐴  +  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) ) ) | 
						
							| 52 | 37 38 | npcand | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( ( ( 𝐴 ↑ 2 )  −  1 )  +  1 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 53 | 52 | fveq2d | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( √ ‘ ( ( ( 𝐴 ↑ 2 )  −  1 )  +  1 ) )  =  ( √ ‘ ( 𝐴 ↑ 2 ) ) ) | 
						
							| 54 | 12 16 | sqrtsqd | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( √ ‘ ( 𝐴 ↑ 2 ) )  =  𝐴 ) | 
						
							| 55 | 53 54 | eqtrd | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( √ ‘ ( ( ( 𝐴 ↑ 2 )  −  1 )  +  1 ) )  =  𝐴 ) | 
						
							| 56 | 55 | oveq1d | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( ( √ ‘ ( ( ( 𝐴 ↑ 2 )  −  1 )  +  1 ) )  +  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) )  =  ( 𝐴  +  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) ) ) | 
						
							| 57 |  | pellfundge | ⊢ ( ( ( 𝐴 ↑ 2 )  −  1 )  ∈  ( ℕ  ∖  ◻NN )  →  ( ( √ ‘ ( ( ( 𝐴 ↑ 2 )  −  1 )  +  1 ) )  +  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) )  ≤  ( PellFund ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) ) | 
						
							| 58 | 1 57 | syl | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( ( √ ‘ ( ( ( 𝐴 ↑ 2 )  −  1 )  +  1 ) )  +  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) )  ≤  ( PellFund ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) ) | 
						
							| 59 | 56 58 | eqbrtrrd | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐴  +  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) )  ≤  ( PellFund ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) ) | 
						
							| 60 |  | pellfundre | ⊢ ( ( ( 𝐴 ↑ 2 )  −  1 )  ∈  ( ℕ  ∖  ◻NN )  →  ( PellFund ‘ ( ( 𝐴 ↑ 2 )  −  1 ) )  ∈  ℝ ) | 
						
							| 61 | 1 60 | syl | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( PellFund ‘ ( ( 𝐴 ↑ 2 )  −  1 ) )  ∈  ℝ ) | 
						
							| 62 | 61 46 | letri3d | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( ( PellFund ‘ ( ( 𝐴 ↑ 2 )  −  1 ) )  =  ( 𝐴  +  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) )  ↔  ( ( PellFund ‘ ( ( 𝐴 ↑ 2 )  −  1 ) )  ≤  ( 𝐴  +  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) )  ∧  ( 𝐴  +  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) )  ≤  ( PellFund ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) ) ) ) | 
						
							| 63 | 51 59 62 | mpbir2and | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( PellFund ‘ ( ( 𝐴 ↑ 2 )  −  1 ) )  =  ( 𝐴  +  ( √ ‘ ( ( 𝐴 ↑ 2 )  −  1 ) ) ) ) |