| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qtopt1.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | qtopt1.1 | ⊢ ( 𝜑  →  𝐽  ∈  Fre ) | 
						
							| 3 |  | qtopt1.2 | ⊢ ( 𝜑  →  𝐹 : 𝑋 –onto→ 𝑌 ) | 
						
							| 4 |  | qtopt1.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑌 )  →  ( ◡ 𝐹  “  { 𝑥 } )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 5 |  | t1top | ⊢ ( 𝐽  ∈  Fre  →  𝐽  ∈  Top ) | 
						
							| 6 | 2 5 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 7 |  | fofn | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌  →  𝐹  Fn  𝑋 ) | 
						
							| 8 | 3 7 | syl | ⊢ ( 𝜑  →  𝐹  Fn  𝑋 ) | 
						
							| 9 | 1 | qtoptop | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐹  Fn  𝑋 )  →  ( 𝐽  qTop  𝐹 )  ∈  Top ) | 
						
							| 10 | 6 8 9 | syl2anc | ⊢ ( 𝜑  →  ( 𝐽  qTop  𝐹 )  ∈  Top ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  ( 𝐽  qTop  𝐹 ) )  →  𝑥  ∈  ∪  ( 𝐽  qTop  𝐹 ) ) | 
						
							| 12 | 1 | qtopuni | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐹 : 𝑋 –onto→ 𝑌 )  →  𝑌  =  ∪  ( 𝐽  qTop  𝐹 ) ) | 
						
							| 13 | 6 3 12 | syl2anc | ⊢ ( 𝜑  →  𝑌  =  ∪  ( 𝐽  qTop  𝐹 ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  ( 𝐽  qTop  𝐹 ) )  →  𝑌  =  ∪  ( 𝐽  qTop  𝐹 ) ) | 
						
							| 15 | 11 14 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  ( 𝐽  qTop  𝐹 ) )  →  𝑥  ∈  𝑌 ) | 
						
							| 16 | 15 | snssd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  ( 𝐽  qTop  𝐹 ) )  →  { 𝑥 }  ⊆  𝑌 ) | 
						
							| 17 | 15 4 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  ( 𝐽  qTop  𝐹 ) )  →  ( ◡ 𝐹  “  { 𝑥 } )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 18 | 6 1 | jctir | ⊢ ( 𝜑  →  ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝐽 ) ) | 
						
							| 19 |  | istopon | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ↔  ( 𝐽  ∈  Top  ∧  𝑋  =  ∪  𝐽 ) ) | 
						
							| 20 | 18 19 | sylibr | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 21 |  | qtopcld | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹 : 𝑋 –onto→ 𝑌 )  →  ( { 𝑥 }  ∈  ( Clsd ‘ ( 𝐽  qTop  𝐹 ) )  ↔  ( { 𝑥 }  ⊆  𝑌  ∧  ( ◡ 𝐹  “  { 𝑥 } )  ∈  ( Clsd ‘ 𝐽 ) ) ) ) | 
						
							| 22 | 20 3 21 | syl2anc | ⊢ ( 𝜑  →  ( { 𝑥 }  ∈  ( Clsd ‘ ( 𝐽  qTop  𝐹 ) )  ↔  ( { 𝑥 }  ⊆  𝑌  ∧  ( ◡ 𝐹  “  { 𝑥 } )  ∈  ( Clsd ‘ 𝐽 ) ) ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  ( 𝐽  qTop  𝐹 ) )  →  ( { 𝑥 }  ∈  ( Clsd ‘ ( 𝐽  qTop  𝐹 ) )  ↔  ( { 𝑥 }  ⊆  𝑌  ∧  ( ◡ 𝐹  “  { 𝑥 } )  ∈  ( Clsd ‘ 𝐽 ) ) ) ) | 
						
							| 24 | 16 17 23 | mpbir2and | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  ( 𝐽  qTop  𝐹 ) )  →  { 𝑥 }  ∈  ( Clsd ‘ ( 𝐽  qTop  𝐹 ) ) ) | 
						
							| 25 | 24 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ∪  ( 𝐽  qTop  𝐹 ) { 𝑥 }  ∈  ( Clsd ‘ ( 𝐽  qTop  𝐹 ) ) ) | 
						
							| 26 |  | eqid | ⊢ ∪  ( 𝐽  qTop  𝐹 )  =  ∪  ( 𝐽  qTop  𝐹 ) | 
						
							| 27 | 26 | ist1 | ⊢ ( ( 𝐽  qTop  𝐹 )  ∈  Fre  ↔  ( ( 𝐽  qTop  𝐹 )  ∈  Top  ∧  ∀ 𝑥  ∈  ∪  ( 𝐽  qTop  𝐹 ) { 𝑥 }  ∈  ( Clsd ‘ ( 𝐽  qTop  𝐹 ) ) ) ) | 
						
							| 28 | 10 25 27 | sylanbrc | ⊢ ( 𝜑  →  ( 𝐽  qTop  𝐹 )  ∈  Fre ) |