Metamath Proof Explorer


Theorem qtopt1

Description: If every equivalence class is closed, then the quotient space is T_1 . (Contributed by Thierry Arnoux, 5-Jan-2020)

Ref Expression
Hypotheses qtopt1.x 𝑋 = 𝐽
qtopt1.1 ( 𝜑𝐽 ∈ Fre )
qtopt1.2 ( 𝜑𝐹 : 𝑋onto𝑌 )
qtopt1.3 ( ( 𝜑𝑥𝑌 ) → ( 𝐹 “ { 𝑥 } ) ∈ ( Clsd ‘ 𝐽 ) )
Assertion qtopt1 ( 𝜑 → ( 𝐽 qTop 𝐹 ) ∈ Fre )

Proof

Step Hyp Ref Expression
1 qtopt1.x 𝑋 = 𝐽
2 qtopt1.1 ( 𝜑𝐽 ∈ Fre )
3 qtopt1.2 ( 𝜑𝐹 : 𝑋onto𝑌 )
4 qtopt1.3 ( ( 𝜑𝑥𝑌 ) → ( 𝐹 “ { 𝑥 } ) ∈ ( Clsd ‘ 𝐽 ) )
5 t1top ( 𝐽 ∈ Fre → 𝐽 ∈ Top )
6 2 5 syl ( 𝜑𝐽 ∈ Top )
7 fofn ( 𝐹 : 𝑋onto𝑌𝐹 Fn 𝑋 )
8 3 7 syl ( 𝜑𝐹 Fn 𝑋 )
9 1 qtoptop ( ( 𝐽 ∈ Top ∧ 𝐹 Fn 𝑋 ) → ( 𝐽 qTop 𝐹 ) ∈ Top )
10 6 8 9 syl2anc ( 𝜑 → ( 𝐽 qTop 𝐹 ) ∈ Top )
11 simpr ( ( 𝜑𝑥 ( 𝐽 qTop 𝐹 ) ) → 𝑥 ( 𝐽 qTop 𝐹 ) )
12 1 qtopuni ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋onto𝑌 ) → 𝑌 = ( 𝐽 qTop 𝐹 ) )
13 6 3 12 syl2anc ( 𝜑𝑌 = ( 𝐽 qTop 𝐹 ) )
14 13 adantr ( ( 𝜑𝑥 ( 𝐽 qTop 𝐹 ) ) → 𝑌 = ( 𝐽 qTop 𝐹 ) )
15 11 14 eleqtrrd ( ( 𝜑𝑥 ( 𝐽 qTop 𝐹 ) ) → 𝑥𝑌 )
16 15 snssd ( ( 𝜑𝑥 ( 𝐽 qTop 𝐹 ) ) → { 𝑥 } ⊆ 𝑌 )
17 15 4 syldan ( ( 𝜑𝑥 ( 𝐽 qTop 𝐹 ) ) → ( 𝐹 “ { 𝑥 } ) ∈ ( Clsd ‘ 𝐽 ) )
18 6 1 jctir ( 𝜑 → ( 𝐽 ∈ Top ∧ 𝑋 = 𝐽 ) )
19 istopon ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = 𝐽 ) )
20 18 19 sylibr ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
21 qtopcld ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋onto𝑌 ) → ( { 𝑥 } ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ↔ ( { 𝑥 } ⊆ 𝑌 ∧ ( 𝐹 “ { 𝑥 } ) ∈ ( Clsd ‘ 𝐽 ) ) ) )
22 20 3 21 syl2anc ( 𝜑 → ( { 𝑥 } ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ↔ ( { 𝑥 } ⊆ 𝑌 ∧ ( 𝐹 “ { 𝑥 } ) ∈ ( Clsd ‘ 𝐽 ) ) ) )
23 22 adantr ( ( 𝜑𝑥 ( 𝐽 qTop 𝐹 ) ) → ( { 𝑥 } ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ↔ ( { 𝑥 } ⊆ 𝑌 ∧ ( 𝐹 “ { 𝑥 } ) ∈ ( Clsd ‘ 𝐽 ) ) ) )
24 16 17 23 mpbir2and ( ( 𝜑𝑥 ( 𝐽 qTop 𝐹 ) ) → { 𝑥 } ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) )
25 24 ralrimiva ( 𝜑 → ∀ 𝑥 ( 𝐽 qTop 𝐹 ) { 𝑥 } ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) )
26 eqid ( 𝐽 qTop 𝐹 ) = ( 𝐽 qTop 𝐹 )
27 26 ist1 ( ( 𝐽 qTop 𝐹 ) ∈ Fre ↔ ( ( 𝐽 qTop 𝐹 ) ∈ Top ∧ ∀ 𝑥 ( 𝐽 qTop 𝐹 ) { 𝑥 } ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ) )
28 10 25 27 sylanbrc ( 𝜑 → ( 𝐽 qTop 𝐹 ) ∈ Fre )