Step |
Hyp |
Ref |
Expression |
1 |
|
qtopt1.x |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
qtopt1.1 |
⊢ ( 𝜑 → 𝐽 ∈ Fre ) |
3 |
|
qtopt1.2 |
⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) |
4 |
|
qtopt1.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ◡ 𝐹 “ { 𝑥 } ) ∈ ( Clsd ‘ 𝐽 ) ) |
5 |
|
t1top |
⊢ ( 𝐽 ∈ Fre → 𝐽 ∈ Top ) |
6 |
2 5
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
7 |
|
fofn |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 Fn 𝑋 ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
9 |
1
|
qtoptop |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 Fn 𝑋 ) → ( 𝐽 qTop 𝐹 ) ∈ Top ) |
10 |
6 8 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 qTop 𝐹 ) ∈ Top ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝐽 qTop 𝐹 ) ) → 𝑥 ∈ ∪ ( 𝐽 qTop 𝐹 ) ) |
12 |
1
|
qtopuni |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → 𝑌 = ∪ ( 𝐽 qTop 𝐹 ) ) |
13 |
6 3 12
|
syl2anc |
⊢ ( 𝜑 → 𝑌 = ∪ ( 𝐽 qTop 𝐹 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝐽 qTop 𝐹 ) ) → 𝑌 = ∪ ( 𝐽 qTop 𝐹 ) ) |
15 |
11 14
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝐽 qTop 𝐹 ) ) → 𝑥 ∈ 𝑌 ) |
16 |
15
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝐽 qTop 𝐹 ) ) → { 𝑥 } ⊆ 𝑌 ) |
17 |
15 4
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝐽 qTop 𝐹 ) ) → ( ◡ 𝐹 “ { 𝑥 } ) ∈ ( Clsd ‘ 𝐽 ) ) |
18 |
6 1
|
jctir |
⊢ ( 𝜑 → ( 𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽 ) ) |
19 |
|
istopon |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽 ) ) |
20 |
18 19
|
sylibr |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
21 |
|
qtopcld |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( { 𝑥 } ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ↔ ( { 𝑥 } ⊆ 𝑌 ∧ ( ◡ 𝐹 “ { 𝑥 } ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
22 |
20 3 21
|
syl2anc |
⊢ ( 𝜑 → ( { 𝑥 } ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ↔ ( { 𝑥 } ⊆ 𝑌 ∧ ( ◡ 𝐹 “ { 𝑥 } ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝐽 qTop 𝐹 ) ) → ( { 𝑥 } ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ↔ ( { 𝑥 } ⊆ 𝑌 ∧ ( ◡ 𝐹 “ { 𝑥 } ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
24 |
16 17 23
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝐽 qTop 𝐹 ) ) → { 𝑥 } ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ) |
25 |
24
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ∪ ( 𝐽 qTop 𝐹 ) { 𝑥 } ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ) |
26 |
|
eqid |
⊢ ∪ ( 𝐽 qTop 𝐹 ) = ∪ ( 𝐽 qTop 𝐹 ) |
27 |
26
|
ist1 |
⊢ ( ( 𝐽 qTop 𝐹 ) ∈ Fre ↔ ( ( 𝐽 qTop 𝐹 ) ∈ Top ∧ ∀ 𝑥 ∈ ∪ ( 𝐽 qTop 𝐹 ) { 𝑥 } ∈ ( Clsd ‘ ( 𝐽 qTop 𝐹 ) ) ) ) |
28 |
10 25 27
|
sylanbrc |
⊢ ( 𝜑 → ( 𝐽 qTop 𝐹 ) ∈ Fre ) |